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Abstract

In panorama understanding, the widely used equirectan-
gular projection(ERP) entails boundary discontinuity and
spatial distortion. It severely deteriorates the conventional
CNNs and vision Transformers on panoramas. In this pa-
per, we propose a simple yet effective architecture PanoSwin
to learn panorama representations with ERP. To deal with
the challenges brought by equirectangular projection, we
explore a pano-style shift windowing scheme and a novel
pitch attention to address the boundary discontinuity and
the spatial distortion respectively. Besides, based on spher-
ical distance and Cartesian coordinates, we adapt abso-
lute positional encodings and relative positional biases for
panoramas to enhance panoramic geometry information.
Realizing that planar image understanding might share
some common knowledge with panorama understanding,
we devise a novel two-stage learning framework to facili-
tate transfer common knowledge from the planar images to
panoramas. We conduct experiments against the state-of
the arts on various panoramic tasks, i.e., panoramic object
detection, panoramic classification and panoramic layout
estimation. The experimental results demonstrate the effec-
tiveness of PanoSwin in panorama understanding.

1. Introduction
Panoramas are widely used in many real applications,

such as virtual reality, autonomous driving, robots, civil
surveillance, etc. Panorama understanding has attracted
increasing interest in the research community [5, 27, 34].
Among these methods, the most popular and convenient
representation of panorama is adopted via equirectangular
projection (ERP), which maps the latitude and longitude of
the spherical representation to horizontal and vertical grid
coordinates. However, the inherent omnidirectional vision
remains the challenges of the panorama understanding. Al-
though convolutional neural networks (CNNs) [11, 14, 28]
have shown outstanding performances on planar image un-
derstanding, most of CNN-based methods are unsuitable for
panoramas because of two fundamental problems entailed
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Figure 1. (1). Fig. a is how a panoramic image looks, just like
a planar world map, where top/bottom regions are connected to
the earth poles and the right side is connected to the left. (2).
Our PanoSwin is based on window attention [19]. Fig. a also
shows the original window partition in dotted orange, where the
two windows in bold orange are separated by equirectangular
projection(ERP). (3). Fig. b shows pano-style shift windowing
scheme, which brings the two departed regions together. (4). Fig.
c shows our pitch attention module, which helps a distorted win-
dow to interact with an undistorted one.

by ERP: (1) polar and side boundary discontinuity and (2)
spatial distortion. Specifically, the north/south polar region
in spherical representations are closely connected. But the
converted region covers the whole top/bottom boundaries.
On this account, polar boundary continuity is destroyed by
ERP. Similarly, side boundary continuity is also destroyed
since the left and right sides are split by ERP. In the mean-
while, spatial distortion also severely deforms the image
content, especially in polar regions.

A common solution is to adapt convolution to the spher-
ical space [4, 5, 24, 34]. However, these methods might
suffer from high computation cost from the adaptation pro-
cess. Besides, Spherical Transformer [2] and PanoFormer
[22] specially devise patch sampling approaches to remove



panoramic distortion. However, the specially designed
patch sampling approaches might not be feasible for pla-
nar images. In our experiments we demonstrate that exploit
planar knowledge can boost the performance of panorama
understanding.

Inspired by Swin Transformer [19], we propose
PanoSwin Transformer to reduce distortion for panoramic
images, as briefly shown in Fig. 1. To cope with bound-
ary discontinuity, we explore a pano-style shift window-
ing scheme (PSW). In PSW, side continuity is established
by horizontal shift. To establish polar continuity, we firstly
split the panorama in half and then rotate the right half an-
ticlockwise. To overcome spatial distortion, we first rotate
the pitch of the panorama by 0.5π. So the polar regions
of the original feature map are “swapped” with some equa-
tor regions of the rotated panorama. For each window in
the original panorama, we locate a corresponding window
in the rotated panorama. Then we perform cross-attention
between these two windows. We name the module pitch
attention (PA), which is plug-and-play and can be inserted
in various backbones. Intuitively, pitch attention can help a
window “know” how it itself looks like without distortion.

To leverage planar knowledge, some works [24, 25] pro-
posed to to make novel panoramic kernel mimick out-
puts from planar convolution kernel layer by layer. How-
ever, PanoSwin is elaborately designed to be compati-
ble to planar images: PanoSwin can be switched from
pano mode to vanilla swin mode. Let PanoSwin in these
two modes be denoted as PanoSwinp and PanoSwins.
PanoSwinp/PanoSwins can be adopted to process panora-
mas/planar images, details about which will be introduced
in Sec. 3.6. In our paper, PanoSwin is under pano mode
by default. The double-mode feature of PanoSwin make
it possible to devise a simple KP-based two-stage learn-
ing paradigm to leverage planar knowledge: we first pre-
train PanoSwins with planar images; then we switch it to
PanoSwinp and train it with a knowledge preservation (KP)
loss and downstream task losses. This paradigm is able to
facilitate transferring common visual knowledge from pla-
nar images to panoramas.

Our main contributions are summarized as following: (1)
We propose PanoSwin to learn panorama features, in which
Pano-style Shift Windowing scheme (PSW) is proposed to
resolve polar and side boundary discontinuity; (2) we pro-
pose pitch attention module (PA) to overcome spatial dis-
tortion introduced by ERP; (3) PanoSwin is designed to be
compatible with planar images. Therefore, we proposed a
KP-based two-stage learning paradigm to transfer common
visual knowledge from planar images to panoramas; (4) we
conduct experiments on various panoramic tasks, including
panoramic object detection, panoramic classification and
panoramic layout estimation on five datasets. The results
have validated effectiveness of our proposed method.

2. Related Work
Vision Transformers. Inspired by transformer architec-
tures [7, 31] in NLP researches, Vision Transformers [8,
9, 19, 33] were proposed to learn vision representations by
leveraging global self-attention mechanism. ViT [8] di-
vides the image into patches and feed them into the trans-
former encoder. Recent works also proposed to insert CNNs
into multi-head self-attention [32] or feed-forward network
[38]. CvT [32] showed that the padding operation in CNNs
implicitly encodes position. DeiT [29] proposed a pure
attention-based vision transformer. CeiT [38] proposed a
image-to-tokens embedding method. Swin transformer [19]
proposed a window attention opertation to reduce computa-
tion cost. More details of will be discussed on Sec. 3.1.
DeiT III [30] proposed an improved training strategy to en-
hance model performance.
Panorama Representation Learning. Prior works usu-
ally adapt convolution to sphere faces. KTN [24] pro-
posed to compensate distortions occurred by the planar pro-
jection. S2CNN [4] leveraged generalized Fourier trans-
form and proposed to extract features using spherical filters
on the input data, in which both expressive and rotation-
equivariance were satisfied. SphereNet [5] sample points
uniformly in the sphere face to enable conventional con-
volutions. SpherePHD [16] used regular polyhedrons to
approximate panoramas and projected panoramas on the
icosahedron that contains most faces among regular poly-
hedrons. Several works [6, 10, 34] also sought to achieve
rotation equivariance with graph convolution.

Recent works took advantage of transformer architecture
[31] to learn panorama features. PanoFormer [22] divided
patches on the spherical tangent domain as a vision trans-
former input to reduce distortion. Spherical transformer [2]
uniformly samples patches as transformer input and pro-
poses a module to alleviate rotation distortion. However,
these works mainly target panoramas. Therefore, it might
be unable to transfer planar knowledge to panoramic tasks.

3. Method
A panorama in equirectangular form is just like the pla-

nar world map in our daily life. Each pixel of the panorama
can be located by a longitude u and a latitude v: (u, v), u ∈
[−π, π), v ∈ [−0.5π, 0.5π). Compared with Swin Trans-
former [19], the main novelty of PanoSwin lies in three as-
pects: pano-style shift windowing scheme, pitch attention
module and KP-based two-stage learning procedure.

3.1. Preliminaries of Swin Transformer

ViT [8] divides an image into patches and adopts a
CNN to learn patch features. These patch features are
then viewed as a sequence and fed into a transformer en-
coder. Although ViT [8] achieves good performances in
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Figure 3. Top: our way to obtain a rotated window and perform
pitch attention: (a) The pitch of the panorama is rotated by 90◦;
(b) we sample a rotated window in the rotated panorama for each
original window; (c) window-wise attention is performed between
old and rotated windows. The squares, best distinguished by color,
shows each step of window conversion. Bottom: the detailed
workflow of step (c).

various vision tasks, it suffer from high computation cost
from global attention. Thus, Swin Transformer [19] pro-
posed local multi-head self attention (W-MSA), where im-
age patches were further divided into small windows. At-
tention is only performed within each window. To enable
information interaction among different windows, Swin
Transformer [19] introduced Shifted Window based Multi-
head Self-Attention (SW-MSA), where the image is hori-
zontally and vertically shifted to form a new one. As shown

in Fig 2-(2), W-MSA/SW-MSA is performed within each
red/blue windows. However, shift windowing can bring
non-neighbor pixels together. So attention masks are re-
quired in this process. Besides, Swin Transformer discard
absolute positional encodings but adopted relative position
bias [12, 13, 19], which specifies relative coordinate differ-
ence between two patches within a window, instead of di-
rectly identifying the x/y coordinate [31].

3.2. Pano-style Shift Windowing Scheme

The problem of boundary discontinuity is brought by
ERP. In a panorama, the left side (u ≈ −π) and right side
(u ≈ π) are indeed connected. Also, all pixels around the
north/south pole (v ≈ −0.5π/0.5π) are neighbor. Tradi-
tional CNNs cannot deal with boundary discontinuity. The
original shift windowing scheme in Swin Transformer [19]
(Fig. 2-(2)) might capture wrong neighbor continuity as
well. Therefore, we propose pano-style shift windowing
scheme(PSW) and pano-style shift windowing multi-head
self attention module(PSW-MSA), as shown in Fig. 2-(1).
PSW can well capture the continuity around both side and
polar boundaries of the panorama. There are three steps:
(1) We horizontally shift the image, which enables the con-
tinuity around the left and right sides; (2) we split the im-
age in half and counterclockwise rotate the right half by π,
which enables the continuities around north pole regions;
(3) we vertically shift the image, which enables the conti-
nuities around south pole regions. Besides, pixels in each
shifted window are connected, so no attention mask is re-
quired in our shift windowing scheme, further simplifying
the attention process.

3.3. Panoramic Rotation

Before going further, we need to introduce an operation
that rotates the north pole of the panoramic image to a target
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Figure 4. a-f.Detection visualization on 360-Indoor test set, where rectangular boxes are converted to spherical plane [3]. g-h.Layout
prediction visualization on the Stanford 2D-3D test set, green/lightblue curves shows the prediction/the groundtruth. i-j are layouts recon-
structed from prediction of g-h.

coordinate. We define it as function R, as shown in Fig. 5.
Let the north pole of the panorama be P0 = (0,−0.5π).
Given a target coordinate P1 = (u1, v1) that P0 will be
rotated to, for a pixel P = (u, v), we generates a new co-
ordinate P ′ = (u′, v′) by P ′ = R(P, P1). By defining
a Cartesian coordinate transition Sph(P ) = (x, y, z) for a
given pixel P = (u, v):

x = sin(u) cos(v), y = cos(u) cos(v), z = − sin(v), (1)

we can explain the function R in formula:

v′ = 2asin(
1

2
||Sph(P )− Sph(P1)||2)− 0.5π,

Pa⊗̂Pb : Sph(Pa)⊗ Sph(Pb),

u′ = Angle(P ⊗̂P1, P0⊗̂P1, (P0⊗̂P1)⊗ P1),

(2)

where : stands for “define”; ⊗ is cross product.
Angle(x1,x2,x3) gives the angle between vector x1 and
vector x2, ranging from −π to π; the counter-clockwise di-
rection is given by x3, that is, Angle(x3,x2,x3) = 0.5π. It
can be accomplished by acos. To obtain a rotated panorama,
we should first calculate each target pixel coordinate by
Eq. (2) and then sample a new panorama. Note that pitch
rotations [26] and horizontal shifting [27] are special cases
of R when u′ = 0 and v′ = 0. Also, R could be an approach
to augment a panoramic image by setting P1 randomly.

Computation analysis: If we only consider multiplica-
tion operation, the function R consumes one ||·||2, three Sph
and four ⊗. Since resultant v′ and u′ might not be integers,
bilinear interpolation(BI-INT) is required as well. Define a
constant K = Ω(||·||2)+3Ω(Sph)+4Ω(⊗)+Ω(BI-INT) =
3× 1 + 2× 3 + 6× 4 + 8 = 41. Then, given an panorama
of H × 2H size, we can give a lower bound for the compu-
tational complexity Ω(R) = 2KH2.

3.4. Pitch Attention Module

Spatial distortion might severely hamper model perfor-
mances, especially around polar regions. Targeting this

problem, we propose a pitch attention module (PA). The
workflow of the pitch attention module is shown in Fig. 2.
Given an panorama I0 of size H × 2H , in step (a), we ro-
tate the pitch of I0 by 0.5π and obtain I1. That is, for each
P1 ∈ I0, we obtain P ′ ∈ I1 by P ′ = R((0,−0.5π), P1).
After the pitch rotation, the polar (resp. equator) regions of
I0 is transformed to equator (resp. polar) regions of I1.
I0 is partitioned into windows the same as the W-MSA

block in Swin transformer. Step (b) in Fig. 2 shows the way
that we obtain the corresponding window in I1. For each
window in I0, we locate the rotated window center in I1,
and then sample a new square window in I1. At last, we
perform cross attention between the old and new windows,
where the old ones are the query and value, while the new
ones are the key. The other details are the same as a W-MSA
block of Swin transformer.

Computation analysis: Let the panorama of H× 2H×
C size be sliced into h×2h patches and the window size be
M , we can give the computational complexity lower bound:
Ω(PA) = Ω(R) + Ω(W-MSA) + Ω(BI-INT) × 2H2 =

2(K + 8)H2 + 8h2C2 + 4M2h2C. Since we have H =
Mh, Ω(PA) = 8h2C2+(4C+2K+16)M2h2, where K =
41. When C is large (e.g., C = 512 as produced by many
backbones), extra computational complexity introduced by
pitch attention can be negligible.

In our network design, we insert a pitch attention mod-
ule to the last of each backbone block, as shown in Tab. 3.
Although pitch attention can enable interaction between
neighbor windows, it does not replace PSW-MSA because
1) the interaction is not fair for all patches; 2) pitch attention
brings more computation than PSW-MSA.

An alternative to our pitch attention module might be
to adopt gnomonic projection [5] to generate tangent-plane
windows, which are undistorted. However, (1) computation
of gnomonic projection depends on viewpoints. It might be
difficult to parallelize gnomonic projection for each window
on GPU and therefore is more time-consuming; (2) we con-
duct experiments and find that tangent-plane windows yield



no performance gain against pitch attention.
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Figure 5. Illustration of panoramic rotation to target position
(0.3π,−0.4π): (1)/(2): the original/rotated panoramic image. (3):
north pole rotation in sphere space. In formula, the figure shows
P ′ = R(P, (0.3π,−0.4π)).

3.5. Pano-style Positional Encodings

For relative positional biases, since the spherical dis-
tance between two patches in different windows varies
largely by the window locations, we condition the relative
positional biases on the great-circle distance:

dc =αi,j sin
2(
vj − vi

2
)+

αi,j cos(vj) cos(vi) sin
2(
uj − ui

2
) + βi,j ,

(3)

where αi,j is great-circle bias and βi,j is planar bias, both
learnable. They are looked up in a table, just like [19].

As for absolute positional encodings, although Liu et.
al. [19] shows that relative positional biases are enough to
reveal patch-wise geometric relations, and therefore abso-
lute positional encodings might not be neccesary. However,
panoramic geometric relations can be complicated. For ex-
ample, on the same latitude, the left of a pixel can also be
its right. Positional encodings based on Cartesian coordi-
nates can strengthen pixel-level geometric information. We
condition the absolute positional encodings by both longi-
tudes/latitudes and the corresponding sphere Cartesian co-
ordinates. We can now adopt fully connected layers to
encode x, y, z, u, v into de-dimensional absolute positional
embeddings, where de is the patch embedding dimension.
Then the positional embedding is added to the patch em-
bedding.

3.6. Two-Stage Learning Paradigm

We devised a two-stage learning paradigm, as shown by
Alg. 1. We call the first stage the planar stage and the sec-
ond the panoramic stage. The planar stage learns planar

knowledge, while the panoramic stage transfers common
knowledge from planar images to panoramas.

The planar stage views the panorama as an planar image
by various augmentation. Regular planar images can also
be fed in this stage, but we try not to introduce additional
training samples for fair comparison. LetLDS be the down-
stream task loss, e.g., a classification loss or a bounding box
regression loss. To enable PanoSwin to process planar im-
ages, we switch it to PanoSwins: (1) we let I1 ← I0 in
Sec. 3.4; (2) absolute positional encodings are disabled; (3)
great-cirle bias αi,j is set to 0 in Eq. (3). We let the obtained
model be a teacher net T .

In the panoramic stage, we initialize a student net S
identical to T . Then we fix T and the planar bias βi,j

of S(Eq. (3)). Then we enable all previously disabled
panoramic features of S and train S with panoramas. Since
little distortion/discontinuity is introduced to central re-
gions, we hope that S can mimick central signals of T . For
this purpose, we introduce a knowledge preservation(KP)
loss LKP to preserve the pretrained knowledge in central
regions simply by a weighted L2 loss. Given a panorama
feature map x, we explain LKP in formula:

LKP =
1∑N
i wi

N∑
i

wi||A(S(x))(i) − Ts(x)(i)||22, (4)

where wi = cos2(vi) cos
2( 12ui) and vi/ui is the lati-

tude/longitude of pixel i; A is an adaptation conventional
layer with kernel size being 1 × 1. The panoramic stage
optimizes LDS +wKPLKP and only allows augmentation
approaches compatible to panoramas, including panoramic
augmentation like random panoramic rotation and non-
geometric augmentation like random color jittering. wKP

is a weight for LKP that starts at 1 and then decays to 0. We
will denote a PanoSwin obtained by the two-stage learning
paradigm as PanoSwin+ in the remaining paper.

There could be many other knowledge distillation ap-
proaches to improve knowledge preservation performance
for specific tasks [20,24,35], but LKP shows a general way
to transfer planar knowledge to panoramic tasks.

original images panomas generated by ERP projection

Figure 6. Case of SPH-MNIST (top) and SPH-CIFAR10 (bottom)



Algorithm 1: two-stage learning paradigm.
Input: a downstream task loss LDS ; a randomly initialied PanoSwin model P .
Output: A trained PanoSwin model.

1 Aplan ← a set of planar augmentation methods, e.g., random resizing, cropping and rotation;
2 Apano ← a set of pano-compatible augmentation methods, e.g., random panoramic rotation, flipping, color jittering;
3 Define train(model, loss, augs) as a function that trains model by optimizing loss and enables augmentation

approaches specified by augs;
4 T ← train(model = Ps, loss = LDS , augs = Aplan ∪ Apano);
5 S ← T ; fix(T ); fix(αi,j of S); S ← train(model = Sp, loss = LDS + LKP , augs = Apano);
6 return S

No. Backbone error↓ para.
M1 SpherePHD [16] 5.92 57k
M2 SphericalTrans. [2] 9.57 60k
M3 SphericalTrans-(Ext.) [2] 4.91 60k
M4 SGCN [34] 5.58 60k
M5 S2CNN [4] 6.97 58k
M6 SwinT13 [19] 4.01 67k
M7 PanoSwinT12 3.08 66k
M8 GCNN [10] 17.21 282k
M10 SphereNet (BI) [5] 5.59 196k
M11 PanoSwinT8 2.25 191k
M12 VGG [23]+KTN [24] 2.06 294M
M13 SwinT [19] 1.53 28M
M14 PanoSwinT92 1.21 28M
M15 PanoSwinT 1.18 30M
M16 PanoSwinT+ 1.15 30M

Table 1. SPH-MNIST Classification result comparison.

No. Backbone acc↑ para.
C1 SpherePHD [16] 59.20 57k
C2 SphericalTransformer [2] 58.21 60k
C3 SGCN [34] 60.72 60k
C4 S2CNN [4] 10.00 58k
C5 SwinT13 [19] 60.46 67k
C6 PanoSwinT12 62.24 66k
C7 SwinT [19] 72.64 28M
C8 PanoSwinT92 74.50 28M
C9 PanoSwinT 74.84 30M
C10 PanoSwinT+ 75.01 30M

Table 2. SPH-CIFAR10 classification result.

4. Experiments

4.1. Experimental Settings

We conducts experiments on three tasks: panoramic
classification, panoramic object detection and panoramic
layout estimation. Considering existing works on panorama

representation learning vary a lot in model size, we de-
sign different PanoSwin backbones for a fair comparison
in terms of model parameters, as shown in Tab. 3. To bet-
ter remove spatial distortion, three convolutional layers are
adopted to capture a larger reception field so as to learn bet-
ter patch embedding.

For panoramic classification, we conduct experiments
on SPH-MNIST and SPH-CIFAR10 datasets. SPH-MNIST
and SPH-CIFAR10 are synthetic panoramic image datasets,
as shown in Fig. 6, where the images of MNIST and
CIFAR are projected with 120◦ of horizontal and verti-
cal FOV. The resultant panoramas are resized to 48 ×
96. We set learning rate lr = 0.001 for light-weighted
SwinT13, PanoSwinT8 and PanoSwinT12. For SwinT13,
PanoSwinT12 and PanoSwinT, we set lr = 0.0001. We
adopt adam optimizer and batch size b = 48 and train the
model for 100/500 epoches in the planar/panoramic stage.

For panoramic object detection, we conduct exper-
iments on the WHU street-view panoramic dataset [36]
(StreetView in short) and 360-Indoor [3]. The object de-
tection performance is evaluated by mean average precision
with IOU=0.5 (mAP@0.5). a. StreetView contains 600
street-view images, in which there are 5058 objects from
four object categories. The training/test set split strictly fol-
lows [36], where one third images are used for training and
the rest for testing. b. 360-Indoor contains 3335 indoor im-
ages from 37 image categories, in which there are 89148
objects from 37 object categories. The training/test set split
strictly follows [3], 70% images are used for training and
the rest for testing. Following [3], we train our model us-
ing conventional bounding boxes, that is, xywh format. We
adopt FasterRCNN+FPN [17,21] as detector. One different
setting is that, since PanoSwin can overcome side discon-
tinuity, we allow the bounding box to cross the image side
boundary by padding the pixels from the other side when
training PanoSwin. We set so for Swin as well for fair com-
parison. We set learning rate lr = 0.0002, batch size b = 4.
We develop the detection framework based on the MMDe-
tection toolbox [1]. The model is trained for 50/100 epochs
in the planar/panoramic stage.



structure alias embedding dim structure para.
PanoSwinT8 8 [W, PSW, PA], PM, [W, PSW, PA], PM, [W, PSW, PA], PM, [W, PSW] 191k

PanoSwinT12 12 [W, PSW, PA], PM, [W, PSW] 66k
SwinT13 [19] 13 [W, PSW, W], PM, [W, PSW] 67k
PanoSwinT92 92 [W,PSW,PA],PM,[W,PSW,PA],PM,[(W,PSW)*2,W,PA],PM,[W,PSW] 28M

SwinT [19] 96 [W,SW],PM,[W,SW],PM,[(W,SW)*3],PM,[W,SW] 28M
PanoSwinT 96 [W,PSW,PA],PM,[W,PSW,PA],PM,[(W,PSW)*2,W,PA],PM,[W,PSW] 30M

Table 3. W: regular windowing attention [19]. SW: shift windowing windowing attention [19]. PSW: pano-style shift windowing attention.
PA: pitch attention module. PM: patch merging [19]. ()*n denotes repeating n times. Refer to Supplementary for more architecture details.

For panoramic room layout estimation, following
HorizonNet [26], we train the model on the LayoutNet
dataset [39], which is composed of PanoContext and the
extended Stanford 2D-3D, consisting of 500 and 571 anno-
tated panoramas respectively. Following HorizonNet [26],
we train our model on the LayoutNet training set and
test it on Stanford 2D-3D test set. We ONLY enable the
panoramic stage in this task.

No. Backbone mAP@0.5↑ para.
I1 R50 [11] + COCO 33.1 72M
I2 SwinT [19] + COCO 33.8 45M
I3 PanoSwinT92 + COCO 35.6 45M
I4 R50 [11] 20.6 72M
I5 R50 [11] + SC [5] 21.1 72M
I6 SwinT [19] 24.0 45M
I7 PanoSwinT92 28.0 45M
I8 PanoSwinT 28.6 47M
I9 PanoSwinT+ 29.4 47M

Table 4. Object Detection Performance Comparison on 360-
Indoor. R50 stands for ResNet50 [11]. SC stands for SphereConv
[5]. COCO denotes a pretraining procedure on MSCOCO [18].

No. Backbone mAP@0.5 ↑ para.
S1 VGG [23]+SCNN [37] 64.1 > 77M
S2 R50 [11] 68.2 72M
S3 R50 [11]+SC [5] 69.4 72M
S4 SwinT 72.8 45M
S5 PanoSwinT92 75.4 45M
S5 PanoSwinT+ 75.7 47M

Table 5. StreetView Object Detection Performance Comparison

4.2. Main Results

For panoramic classification, the results on SPH-
MNIST/SPH-CIFAR10 are reported in Tab. 1/Tab. 2. Two
important observations are: 1) Swin transformer can
achieve results comparable to SOTA works with similar

No. Backbone 3DIoU↑ CE↓ PE↓ para.
P1 R50 [11] 78.12 0.90 2.91 82M
P2 R50 [11] + SC [5] 77.64 0.90 2.94 82M
P3 R34 [11] 77.86 0.92 3.01 33M
P4 SwinT [19] 78.00 0.94 3.05 44M
P5 PanoSwinT92 78.10 0.92 2.99 44M
P6 R50 [11]+ IN 84.66 0.66 2.04 82M
P7 R34 [11] + IN 83.88 0.68 2.14 33M
P8 SwinT [19] + IN 84.04 0.66 2.07 44M
P9 PanoSwinT92 + IN 84.11 0.65 2.00 44M

P10 PanoSwinT + IN 84.21 0.65 1.98 46M

Table 6. Layout estimation comparison on Stanford-2D3D test
set. “+ IN” denotes ImageNet [15] pretraining. CE/PE stands for
corner error/pixel error.

number of model parameters, e.g., M6 v.s. M4, revealing
that Swin is more generalizable than CNNs; 2) PanoSwin
always beats Swin, e.g., M7 v.s. M6, M14 v.s. M13, indi-
cating that PanoSwin can better learn panorama features.

Furthermore, on SPH-MNIST, we also test the trained
SwinT13/PanoSwinT12 model on mnist test sets projected
on equator and polar regions. For SwinT13(M6), test error
raises from 2.94 to 5.41. For PanoSwinT12(M7), test er-
ror raises from 2.87 to 3.32. The results further shows that
PanoSwin is more robust to handle spatial distortion.

For panoramic object detection, 360-Indoor and
StreetView [36] are two real-world datasets, making the
results more convincing. The results on these two ta-
bles are reported in Tab. 4 and Tab. 5 respectively. Per-
formance gain of PanoSwinT+ against SwinT is even
larger, e.g. 5.4 on 360-Indoor. In addition, we in-
vestigate the detection performance on low-latitude re-
gions against high-latitude regions. Viewpoints of low-
latitude regions range from −30◦ to 30◦, while view-
points of high-latitude region range from ±60◦ to ±90◦).
We find out that mAP@50 drops by 1.9/3.5/2.0/5.8 using
PanoSwinT92/SwinT/ResNet50+SC/ResNet50. It reveals
that (1) attention mechanisms are better than CNN at han-
dling spatial distortion; (2) Our proposed PanoSwin is the
most robust to deal with polar spatial distortion.



Results on panoramic layout estimation are reported in
Tab. 6. Fig. 4 visualizes the layouts estimated by PanoSwin.
PanoSwinT92 outperforms other backbones but ResNet50.
Although HorizonNet+PanoSwinT92 has almost only half
parameters as HorizonNet+ResNet50 does, PanoSwinT92
still outperforms ResNet50 in corner error and pixel error
with ImageNet [15] pretraining, and is only slightly ex-
ceeded by ResNet50 without pretraining. The results con-
tradict with the huge advantage of PanoSwin in object de-
tection. We conjecture that this is because (1) layout estima-
tion need pixel-level understanding more than object-level
understanding. So spatial distortion is no longer a big prob-
lem; (2) layout estimation depend on wall corners, instead
of polar regions. So polar boundary discontinuity is not im-
portant; (3) HorizonNet designs a Bi-LSTM to overcome
side boundary discontinuity. Therefore, PanoSwin shows
little advantage in layout estimation performance.

Besides, we also report inference speed in Tab. 7. It
shows that (1) pitch attention brings non-negligible com-
putation (PST v.s. PSTs); (2) PanoSwin is efficient when
compared against other panoramic backbones (PS-t v.s.
KTN/SphereNet), which is because PanoSwin introduces
few non-parallelizable operations. On the contrary, a num-
ber of works introduced operations that cannot be paral-
lelized on GPU. For example, KTN [24] adopt different
convolution layers of various kernel sizes in different lati-
tudes, resulting in an extremely time-consuming “for” loop
in the forwarding process. While SphereNet [5] also takes
a long time to calculate uniform sampling coordinates for
each convolution operation.

PST PSTs SwinT KTN [24] PST8 SN
para. 30M 30M 28M 294M 191k 196k
CPU↓ 1.207 1.018 0.982 5.136 0.186 0.682
GPU↓ 0.042 0.015 0.010 3.842 0.021 0.025

Table 7. Single image(512x1024 size) inference speed comparison
(second). PST/SN is short for PanoSwinT/SphereNet [5].

4.3. Ablation Study

We conduct ablation experiments on SPH-MNIST clas-
sification and 360-Indoor object detection. The results are
reported in Tab. 8. On the one hand, a general differ-
ence revealed in the results between these two datasets is
that, the 360-Indoor dataset is more sensitive to our pro-
posed modules than SPH-MNIST, e.g., setting A2, A6 and
A8. We conjure that this is because SPH-MNIST larger but
more simple than 360-Indoor. Therefore some modules like
planar-stage training, pano-style absolute positional encod-
ings and LKP only result in marginal performance gain.

On the other hand, we have observations for different
modules: (1) A1 and A2 show that both planar stage and
panoramic stage are necessary, implying that planar knowl-

No. alternative SM↓ 3I↑
A1 only planar stage 1.76 26.8
A2 only panoramic stage 1.18 25.9
A3 PSW→W 1.43 28.0
A4 PA→W 2.01 27.9
A5 swin rel. pos. [19] 1.31 28.3
A6 remove abs. pos. 1.19 29.0
A7 wi ← 1 in LKP 1.26 27.6
A8 w/o LKP 1.18 28.6
A9 full model+ 1.15 29.4

Table 8. Ablation of SPH-MNIST Classification and 360-Indoor
object detection using PanoSwinT. Column “SM”/“3I” reports test
error on SPH-MNIST/mAP@50 on 360-Indoor. “swin rel. pos.”
denotes replacing our proposed pano-style relative position biases
by the original swin-style relative biases [19].

edge is also helpful for panorama representation learning.
Indeed, various planar augmentation approaches can be
very effective to improve model performance. But some
of existing works [2, 5] might not emphasize importance
of planar knowledge. (2) A3 and A4 validate effective-
ness of PSW and PA. Fig. 4.d-f also reveals so. Detec-
tion on the table and the chair on the left/right side shows
that PSW effectively bridges side discontinuity. Detection
on the large white table in the middle bottom implies that
PA can solve spatial distortion. (3) A5 and A6 demon-
strate effectiveness of absolute position encodings and rel-
ative position biases are effective. (4) A8 shows that cen-
tral knowledge preservation accomplished byLKP can well
improve model performance. While A7 shows that naive
L′
KP even results in performance drop, implying that po-

lar and side planar knowledge from the teacher net T is not
reliable.

5. Conclusion

spatial distortion and boundary discontinuity are two fun-
damental problems in for panorama understanding. In this
paper, we propose PanoSwin to learn panorama features
in the ERP form, which is simple and fast. In PanoSwin,
we first propose a pano-style shift windowing scheme that
bridges discontinued boundary. Then a novel pitch attention
module is adopted to overcome spatial distortion. More-
over, to transfer common knowledge from planar images
to panoramic tasks, we contribute a KP-based two-stage
learning paradigm. Experiments demonstrates that, with-
out introducing much extra parameters and computation
over Swin [19], PanoSwin achieves SOTA results in var-
ious tasks, including panoramic classification, panoramic
object detection and panoramic layout estimation. In the
future, we will further extend PanoSwin to more tasks like
panoramic segmentation and panoramic depth estimation.
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Nathanaël Perraudin. Deepsphere: a graph-based spherical
CNN. In International Conference on Learning Representa-
tions (ICLR). OpenReview.net, 2020. 2

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), pages 4171–
4186, 2019. 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. CoRR, abs/2010.11929, 2020. 2

[9] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichtenhofer.
Multiscale vision transformers. In Computer Vision and Pat-
tern Recognition (CVPR), pages 6824–6835, 2021. 2

[10] Pascal Frossard and Renata Khasanova. Graph-based clas-
sification of omnidirectional images. In International Con-
ference on Computer Vision Workshops (ICCV workshops),
pages 860–869, 2017. 2, 6

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition (CVPR), pages 770–778,
2016. 1, 7

[12] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen
Wei. Relation networks for object detection. In Computer
Vision and Pattern Recognition (CVPR), pages 3588–3597,
2018. 3

[13] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In Computer Vision
and Pattern Recognition (CVPR), pages 3464–3473, 2019. 3

[14] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Computer Vision and Pattern Recognition (CVPR),
pages 2261–2269, 2017. 1

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 7,
8

[16] Yeon Kun Lee, Jaeseok Jeong, Jong Seob Yun, Wonjune
Cho, and Kuk-Jin Yoon. Spherephd: Applying cnns on a
spherical polyhedron representation of 360deg images. In
Computer Vision and Pattern Recognition (CVPR), pages
9181–9189, 2019. 2, 6

[17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In Computer Vision and Pat-
tern Recognition (CVPR), pages 2117–2125, 2017. 6

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Eu-
ropean Conference on Computer Vision (ECCV), pages 740–
755. Springer, 2014. 7

[19] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
International Conference on Computer Vision (ICCV), pages
9992–10002, 2021. 1, 2, 3, 5, 6, 7, 8

[20] Zhidan Liu, Zhen Xing, Xiangdong Zhou, Yijiang Chen, and
Guichun Zhou. 3d-augmented contrastive knowledge distil-
lation for image-based object pose estimation. In Proceed-
ings of the 2022 International Conference on Multimedia Re-
trieval, pages 508–517, 2022. 5

[21] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (T-PAMI), 39(6):1137–1149,
2017. 6

[22] Zhijie Shen, Chunyu Lin, Kang Liao, Lang Nie, Zishuo
Zheng, and Yao Zhao. Panoformer: Panorama transformer
for indoor 360° depth estimation. CoRR, abs/2203.09283,
2022. 1, 2

[23] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6, 7

[24] Yu-Chuan Su and Kristen Grauman. Kernel transformer
networks for compact spherical convolution. In Computer
Vision and Pattern Recognition (CVPR), pages 9442–9451,
2019. 1, 2, 5, 6, 8

[25] Yu-Chuan Su and Kristen Grauman. Learning spherical con-
volution for fast features from 360 imagery. Advances in
Neural Information Processing Systems (NIPS), 30, 2017. 2

[26] Cheng Sun, Chi-Wei Hsiao, Min Sun, and Hwann-Tzong
Chen. Horizonnet: Learning room layout with 1d representa-
tion and pano stretch data augmentation. In Computer Vision



and Pattern Recognition (CVPR), pages 1047–1056, 2019.
4, 7

[27] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet:
360 indoor holistic understanding with latent horizontal fea-
tures. In Computer Vision and Pattern Recognition (CVPR),
pages 2573–2582, 2021. 1, 4

[28] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alexander A. Alemi. Inception-v4, inception-resnet and the
impact of residual connections on learning. In AAAI Con-
ference on Artificial Intelligence (AAAI), pages 4278–4284,
2017. 1

[29] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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