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A Survey on Video Diffusion Models
Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu,

Hang Xu, Zuxuan Wu and Yu-Gang Jiang

Abstract—The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision, with the diffusion
model playing a crucial role in this achievement. Due to their impressive generative capabilities, diffusion models are gradually
superseding methods based on GANs and auto-regressive Transformers, demonstrating exceptional performance not only in image
generation and editing, but also in the realm of video-related research. However, existing surveys mainly focus on diffusion models in
the context of image generation, with few up-to-date reviews on their application in the video domain. To address this gap, this paper
presents a comprehensive review of video diffusion models in the AIGC era. Specifically, we begin with a concise introduction to the
fundamentals and evolution of diffusion models. Subsequently, we present an overview of research on diffusion models in the video
domain, categorizing the work into three key areas: video generation, video editing, and other video understanding tasks. We conduct
a thorough review of the literature in these three key areas, including further categorization and practical contributions in the field.
Finally, we discuss the challenges faced by research in this domain and outline potential future developmental trends. A comprehensive
list of video diffusion models studied in this survey is available at https://github.com/ChenHsing/Awesome-Video-Diffusion-Models.

Index Terms—Survey, Video Diffusion Model, Video Generation, Video Editing, AIGC
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1 INTRODUCTION

A I-generated content (AIGC) is currently one of the most
prominent research fields in computer vision and artificial

intelligence. It has not only garnered extensive attention and
scholarly investigation, but also exerted profound influence across
industries and other applications, such as computer graphics, art
and design, medical imaging, etc. Among these endeavors, a
series of approaches represented by diffusion models [1–7] have
emerged as particularly successful, rapidly supplanting methods
based on generative adversarial networks (GANs) [8–12] and
auto-regressive Transformers [13–16] to become the predominant
approach for image generation. Due to their strong controllabil-
ity, photorealistic generation, and impressive diversity, diffusion-
based methods also bloom across a wide range of computer vision
tasks, including image editing [17–20], dense prediction [21–
25], and diverse areas such as video synthesis [26–31] and 3D
generation [32–34].

As one of the most important mediums, video emerges as
a dominant force on the Internet. Compared to mere text and
static image, video presents a trove of dynamic information,
providing users with a more comprehensive and immersive vi-
sual experience. Research on video tasks based on the diffusion
models is progressively gaining traction. As shown in Fig. 1, the
number of research publications of video diffusion models has
increased significantly since 2022 and can be categorized into
three major classes: video generation [26, 27, 29–31, 35, 36],
video editing [37–41], and video understanding [42–45].

With rapid advancement of video diffusion models [27] and
their demonstration of impressive results, the endeavor to track
and compare recent research on this topic gains great importance.
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Fig. 1: Summarization on video diffusion model research works.
(a) The number of related research works is rapidly increasing. (b)
Video generation and editing are the top two research areas using
diffusion models.

Several survey articles have covered foundational models in the era
of AIGC [46, 47], encompassing the diffusion model itself [48, 49]
and multi-modal learning [50–52]. There are also surveys specifi-
cally focusing on text-to-image [53] research and text-to-3D [54]
applications. However, these surveys either provide only a coarse
coverage of the video diffusion models or place greater emphasis
on image modesl [49, 50, 53]. As such, in this work, we aim to
fulfill the blank with a comprehensive review on the methodolo-
gies, experimental settings, benchmark datasets, and other video
applications of the diffusion model.
Contribution: In this survey, we systematically track and sum-
marize recent literature concerning video diffusion models, en-
compassing domains such as video generation, editing, and other
aspects of video understanding. By extracting shared technical
details, this survey covers the most representative works in the
field. Background and relevant knowledge preliminaries concern-
ing video diffusion models are also introduced. Furthermore, we
conduct a comprehensive analysis and comparison of benchmarks
and settings for video generation. To the best of our knowledge,
we are the first to concentrate on this specific domain. More
importantly, given the rapid evolution of the video diffusion,
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we might not cover all the latest advancements in this survey.
Therefore we encourage researchers to get in touch with us to
share their new findings in this domain, enabling us to maintain
currency. These novel contributions will be incorporated into the
revised version for discussion.
Survey Pipeline: In Section 2, we will cover background knowl-
edge, including problem definition, datasets, evaluation metrics,
and relevant research domains. Subsequently, in Section 3, we
primarily present an overview of methods in the field of video
generation. In Section 4, we delve into the principal studies con-
cerning video editing tasks. In Section 5, we elucidate the various
directions of utilizing diffusion models for video understanding.
In Section 6, we highlight the existing research challenges and
potential future avenues, culminating in our concluding remarks
in Section 7.

2 PRELIMINARIES

In this section, we first present preliminaries of diffusion models,
followed by reviewing the related research domains. Finally, we
introduce the commonly used datasets and evaluation metrics.

2.1 Diffusion Model
Diffusion models [55, 56] are a category of probabilistic gen-
erative models that learn to reverse a process that gradually
degrades the training data structure and have become the new
state-of-the-art family of deep generative models. They have
broken the long-held dominance of generative adversarial net-
works (GANs) [57] in a variety of challenging tasks such as
image generation [58–63], image super-resolution [60, 64–66],
and image editing [67, 68]. Current research on diffusion models
is mostly based on three predominant formulations: denoising
diffusion probabilistic models (DDPMs) [55, 58, 69], score-based
generative models (SGMs) [59, 61], and stochastic differential
equations (Score SDEs) [56, 70].

2.1.1 Denoising Diffusion Probabilistic Models (DDPMs)
A denoising diffusion probabilistic model (DDPM) [55, 58, 69]
involves two Markov chains: a forward chain that perturbs data
to noise, and a reverse chain that converts noise back to data.
The former aims at transforming any data into a simple prior
distribution, while the latter learns transition kernels to reverse
the former process. New data points can be generated by first
sampling a random vector from the prior distribution, followed by
ancestral sampling through the reverse Markov chain. The pivot
of this sampling process is to train the reverse Markov chain to
match the actual time reversal of the forward Markov chain.

Formally, given a data distribution x0 ∽ q(x0), the for-
ward Markov process generates a sequence of random vari-
ables x1, x2, ..., xT with transition kernel q(xt|xt−1). The joint
distribution of x1, x2, ..., xT conditioned on x0, denoted as
q(x1, ..., xT |x0), can be factorized into

q(x1, ..., xT |x0) =
T∏

t=1

q(xt|xt−1). (1)

Typically, the transition kernel is designed as

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where βt ∈ (0, 1) is a hyperparameter chosen ahead of model
training.

The reverse Markov chain is parameterized by a prior distri-
bution p(xT ) = N (xT ; 0, I) and a learnable transition kernel
pθ(xt−1|xt) which takes the form of

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

where θ denotes model parameters and the mean µθ(xt, t) and
variance Σθ(xt, t) are parameterized by deep neural networks.
With the reverse Markov chain, we can generate new data x0 by
first sampling a noise vector xT ∽ p(xT ), then iteratively sam-
pling from the learnable transition kernel xt−1 ∽ pθ(xt−1|xt)
until t = 1.

2.1.2 Score-Based Generative Models (SGMs)

The key idea of score-based generative models (SGMs) [59, 61]
is to perturb data using various levels of noise and simultaneously
estimate the scores corresponding to all noise levels by training
a single conditional score network. Samples are generated by
chaining the score functions at decreasing noise levels with score-
based sampling approaches. Training and sampling are entirely
decoupled in the formulation of SGMs.

With similar notations in Sec. 2.1.1, let q(x0) be the data
distribution, and 0 < σ1 < σ2 < ... < σT be a sequence of
noise levels. A typical example of SGMs involves perturbing a
data point x0 to xt by the Gaussian noise distribution q(xt|x0) =
N (xt;x0, σ

2
t I), which yields a sequence of noisy data densities

q(x1), q(x2), ..., q(xT ), where q(xt) :=
∫
q(xt)q(x0)dx0. A

noise-conditional score network (NCSN) is a deep neural network
sθ(x, t) trained to estimate the score function ∇xt

log q(xt). We
can directly employ techniques such as score matching, denoising
score matching, and sliced score matching to train our NCSN from
perturbed data points.

For sample generation, SGMs leverage iterative approaches
to produce samples from sθ(x, T ), sθ(x, T − 1), ..., sθ(x, 0)
in succession by using techniques such as annealed Langevin
dynamics (ALD).

2.1.3 Stochastic Differential Equations (Score SDEs)

Perturbing data with multiple noise scales is key to the success of
the above methods. Score SDEs [56] generalize this idea further
to an infinite number of noise scales. The diffusion process can
be modeled as the solution to the following stochastic differential
equation (SDE):

dx = f(x, t)dt+ g(t)dw (4)

where f(x, t) and g(t) are diffusion and drift functions of the SDE,
and w is a standard Wiener process.

Starting from samples of x(T ) ∽ pT and reversing the
process, we can obtain samples x(0) ∽ p0 through this reverse-
time SDE:

dx = [f(x, t)− g(t)2∇x log qt(x)]dt+ g(t)dw̄ (5)

where w̄ is a standard Wiener process when time flows backwards.
Once the score of each marginal distribution, ∇x log pt(x), is
known for all t, we can derive the reverse diffusion process from
Eq.(5) and simulate it to sample from p0.
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2.2 Related Tasks
The applications of video diffusion model contain a wide scope
of video analysis tasks, including video generation, video editing,
and various other forms of video understanding. The methodolo-
gies for these tasks share similarities, often formulating the prob-
lems as diffusion generation tasks or utilizing the potent controlled
generation capabilities of diffusion models for downstream tasks.
In this survey, the main focus lies on the tasks such as Text-to-
Video generation [26, 28, 31], unconditional video generation [71–
73], and text-guided video editing [37, 38, 74], etc.
• Text-to-Video Generation aims to automatically generate cor-
responding videos based on the textual descriptions. This typically
involves comprehending the scenes, objects, and actions within
the textual descriptions and translating them into a sequence of
coherent visual frames, resulting in a video with both logical
and visual consistency. T2V has broad applications, including the
automatic generation of movies [75], animations [76, 77], virtual
reality content, educational demonstration videos [78], etc.
• Unconditional Video Generation is a generative modeling
task where the objective is to generate a continuous and visually
coherent sequence of videos starting from random noise or a fixed
initial state, without relying on specific input conditions. Unlike
conditional video generation, unconditional video generation does
not require any external guidance or prior information [27, 29, 79].
The generative model needs to autonomously learn how to capture
temporal dynamics, actions, and visual coherence in the absence
of explicit inputs, to produce video content that is both realistic
and diverse. This is crucial for exploring the ability of generative
models to learn video content from unsupervised data and show-
case diversity.
• Text-guided Video Editing is a technique that involves using
textual descriptions to guide the process of editing video content.
In this task, a natural language description is provided as input,
describing the desired changes or modifications to be applied
to a video. The system then analyzes the textual input, extracts
relevant information such as objects, actions, or scenes, and uses
this information to guide the editing process. Text-guided video
editing offers a way to facilitate efficient and intuitive editing
by allowing editors to communicate their intentions using natural
language [29, 38, 80], potentially reducing the need for manual
and time-consuming frame-by-frame editing.

2.3 Datasets and Metrics
2.3.1 Data
The evolution of video understanding tasks often aligns with the
development of video datasets, and the same applies to video
generation tasks. In the early stages of video generation, tasks are
limited to training on low-resolution [81], small-scale datasets to
specific domains [82, 83], resulting in relatively monotonous video
generation. With the emergence of large-scale video-text paired
datasets, tasks such as general text-to-video generation [26, 27]
began to gain traction. Thus, the datasets of video generation can
be mainly categorized into caption-level and category-level, as will
be discussed separately.
• Caption-level Datasets consist of videos paired with descriptive
text captions, providing essential data for training models to
generate videos based on textual descriptions. We list several
common caption-level datasets in Table 1, which vary in scale
and domain. Early caption-level video datasets were primarily
used for video-text retrieval tasks [84–86], with small-scales

Dataset Year Text Domain #Clips Resolution

MSR-VTT [84] 2016 Manual Open 10K 240P
DideMo [85] 2017 Manual Flickr 27K -
LSMDC [86] 2017 Manual Movie 118K 1080P

ActivityNet [87] 2017 Manual Action 100K -
YouCook2 [88] 2018 Manual Cooking 14K -

How2 [89] 2018 Manual Instruct 80K -
VATEX [90] 2019 Manual Action 41K 240P

HowTo100M [91] 2019 ASR Instruct 136M 240P
WTS70M [92] 2020 Metadata Action 70M -

YT-Temporal [93] 2021 ASR Open 180M -
WebVid10M [94] 2021 Alt-text Open 10.7M 360P

Echo-Dynamic [95] 2021 Manual Echocardiogram 10K -
Tiktok [96] 2021 Mannual Action 0.3K -

HD-VILA [97] 2022 ASR Open 103M 720P
VideoCC3M [98] 2022 Transfer Open 10.3M -

HD-VG-130M [30] 2023 Generated Open 130M 720P
InternVid [99] 2023 Generated Open 234M 720P

CelebV-Text [100] 2023 Generated Face 70K 480P

TABLE 1: The comparison of main caption-level video datasets.

Datasets Year Categories #Clips Resolution

UCF-101 [101] 2012 101 13K 256× 256
Cityscapes [102] 2015 30 3K 256× 256

Moving MNIST [81] 2016 10 10K 64× 64
Kinetics-400 [103] 2017 400 260K 256× 256

BAIR [104] 2017 2 45K 64× 64
DAVIS [105] 2017 - 90 1280× 720

Sky Time-Lapse [83] 2018 1 38K 256× 256
Ssthv2 [106] 2018 174 220K 256× 256

Kinetics-600 [107] 2018 600 495K 256× 256
Tai-Chi-HD [82] 2019 1 3K 256× 256

Bridge Data [108] 2021 10 7K 256× 256
Mountain Bike [109] 2022 1 1K 576× 1024

RDS [35] 2023 2 683K 512× 1024

TABLE 2: The comparison of existing category-level datasets for
video generation and editing.

(less than 120K) and a limited focus on specific domains (e.g.
movie [86], action [87, 92], cooking [88]). With the introduction
of the open-domain WebVid-10M [94] dataset, a new task of text-
to-video (T2V) generation gains momentum, leading researchers
to focus on open-domain T2V generation tasks. Despite being a
mainstream benchmark dataset for T2V tasks, it still suffers from
issues such as low resolution (360P) and watermarked content.
Subsequently, to enhance the resolution and broader coverage of
videos in the general text-to-video (T2V) tasks, VideoFactory [30]
and InternVid [99] introduce larger-scale (130M & 234M) and
high-definition (720P) open-domain datasets.
• Category-level Datasets consist of videos grouped into specific
categories, with each video labeled by its category. The datasets
are commonly utilized for unconditional video generation or class
conditional video generation tasks. We summarize category-level
commonly used video datasets in Table 2. It is notable that several
of these datasets are also applied to other tasks. For instance, UCF-
101 [101], Kinetics [103, 107], and Something-Something [106]
are typical benchmarks for action recognition. DAVIS [105] was
initially proposed for the video object segmentation task and later
became a commonly used benchmark for video editing. Among
these datasets, UCF-101 [101] stands out as the most widely
utilized in video generation, serving as a benchmark for uncon-
ditional video generation, category-based conditional generation,
and video prediction applications. It comprises samples from
YouTube [110] that encompasses 101 action categories, including
human sports, musical instrument playing, and interactive actions.
Akin to UCF, Kinetics-400 [103] and Kinetics-600 [107] are
two datasets encompassing more complex action categories and
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larger data scale, while retaining the same application scope
as UCF-101 [101]. The Something-Something [106] dataset,
on the other hand, possesses both category-level and caption-
level labels, rendering it particularly suitable for text-conditional
video prediction tasks [111]. It is noteworthy that these sizable
datasets that originally played pivotal roles in the realm of action
recognition exhibit smaller scales (less than 50K) and single-
category [82, 83], single-domain attributes (digital number [81],
driving scenery [35, 102, 109], robot [108]) and is thereby
inadequate for producing high-quality videos. Consequently, in
recent years, datasets specifically crafted for video generation
tasks are proposed, typically originating from featuring unique
attributes, such as high resolution (1080P) [35] or extended dura-
tion [109, 112]. For example, Long Video GAN [109] proposes
horseback dataset which has 66 videos with an average duration
of 6504 frames at 30fps. Video LDM [35] collects RDS dataset
consists of 683,060 real driving videos of 8 seconds length each
with 1080P resolution.

2.3.2 Evaluation Metrics
Evaluation metrics for video generation are commonly catego-
rized into quantitative and qualitative measures. For qualitative
measures, human subjective evaluation has been used in several
works [26, 30, 31, 37], where evaluators are typically presented
with two or more generated videos to compare against videos
synthesized by other competitive models. Observers generally
engage in voting-based assessments regarding the realism, natural
coherence, and text alignment of the videos (T2V tasks). However,
human evaluation is both costly and at the risk of failing to reflect
the full capabilities of the model [113]. Therefore, in the following
we will primarily delve into the quantitative evaluation standards
for image-level and video-level assessments.
• Image-level Metrics. Videos are composed of a sequence of
image frames, thus image-level evaluation metrics can provide
a certain amount of insight into the quality of the generated
video frames. Commonly employed image-level metrics include
Fréchet Inception Distance (FID) [114], Peak Signal-to-Noise
Ratio (PSNR) [115], Structural Similarity Index (SSIM) [116],
and CLIPSIM [117]. FID [114] assesses the quality of generated
videos by comparing synthesized video frames to real video
frames. It involves preprocessing the images for normalization to
a consistent scale, utilizing InceptionV3 [118] to extract features
from real and synthesized videos, and computing mean and co-
variance matrices. These statistics are then combined to calculate
the FID [114] score.

Both SSIM [116] and PSNR [115] are pixel-level metrics.
SSIM [116] evaluates brightness, contrast, and structural features
of original and generated images, while PSNR [115] is a co-
efficient representing the ratio between peak signal and Mean
Squared Error (MSE) [119]. These two metrics are commonly
used to assess the quality of reconstructed image frames, and
are applied in tasks such as super-resolution and in-painting.
CLIPSIM [117] is a method for measuring image-text relevance.
Based on the CLIP [117] model, it extracts both image and text
features and then computes the similarity between them. This
metric is often employed in text-conditional video generation or
editing tasks [26, 30, 31, 35, 37, 120].
• Video-level Metrics. Although image-level evaluation metrics
represent the quality of generated video frames, they primarily
focus on individual frames, disregarding the temporal coherence
of the video. Video-level metrics, on the other hand, would provide

a more comprehensive evaluation of video generation. Fréchet
Video Distance (FVD) [121] is a video quality evaluation metric
based on FID [114]. Unlike image-level methods that use the
Inception [118] network to extract features from single frame,
FVD [121] employs the Inflated-3D Convnets (I3D) [122] pre-
trained on Kinetics [103] to extract features from video clips.
Subsequently, FVD scores are computed through the combination
of means and covariance matrices. Similar to FVD [121], Kernel
Video Distance (KVD) [123] is also based on I3D [122] features,
but it differentiates itself by utilizing Maximum Mean Discrepancy
(MMD) [124], a kernel-based method, to assess the quality of
generated videos. Video IS (Inception Score) [125] calculates the
Inception score of generated videos using features extracted by the
3D-Convnets (C3D) [126], which is often applied in evaluation
on UCF-101 [101]. High-quality videos are characterized by a
low entropy probability, denoted as P (y|x), whereas diversity
is assessed by examining the marginal distribution across all
videos, which should exhibit a high level of entropy. Frame
Consistency CLIP Score [117] is commonly used in video editing
tasks [31, 37, 127] to measure the coherence of edited videos.
Its calculation involves computing CLIP image embeddings for
all frames of the edited videos and reporting the average cosine
similarity between all pairs of video frames.

3 VIDEO GENERATION

In this section, we categorize video generation into four groups
and provide detailed reviews for each: General text-to-video (T2V)
generation (Sec. 3.1), Video Generation with other conditions
(Sec. 3.2), Unconditional Video Generation(Sec. 3.3) and Video
Completion (Sec. 3.4). Finally, we summarize the settings and
evaluation metrics, and present a comprehensive comparison of
various models in Sec. 3.5. The taxonomy details of video gener-
ation is demonstrated in Fig. 2.

3.1 Video Generation with Text Condition
Evidenced by recent research [1, 2, 171] , the interaction between
generative AI and natural language is of paramount importance.
While significant progress has been achieved in generating images
from text [1–3, 16], the development of Text-to-Video (T2V)
approaches is still in its early stages. In this context, we first pro-
vide a brief overview of some non-diffusion methods [172, 173],
followed by delving into the introduction of T2V models on both
training-based and training-free diffusion techniques.

3.1.1 Non-diffusion T2V methods
Before the advent of diffusion-based models, early efforts in the
field were primarily rooted in GANs [8], VQ-VAE [174] and auto-
regressive Transformer [173] frameworks.

Among these works, GODIVA [175] is a representation work
to use VQ-VAE [174] for general T2V task. It pretrains the model
on Howto100M [91] that contains more than 100M video-text
pairs. The proposed model shown excellent zero-shot performance
at the time. Soon afterwards, auto-regressive Transformer methods
lead the main-stream T2V task due to their explicit density mod-
eling and stable training advantages compared with GANs [8, 10–
12]. Among them, CogVideo [173] represents an extensive open-
source video generation model that innovatively leverages the
pretrained CogView2 [16] as its backbone for video generation
tasks. In addition to the above stated works, PHENAKI [176]
introduces a novel C-ViViT [177] backbone for variable length
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VideoFactory [30], PYoCo [128] , Video LDM [35], VDM [27], LVDM [79], Show-1 [129]
Latent-shift [130], MagicVideo [131] , DSDN [132], VideoDirGPT [133], Dysen-VDM [134]
Video Fusion [29], Imagen Video [28], VidRD [135], Make-A-Video [26], AnimateDiff [77]
ModelScope [136] , VideoGEN [137], SimDA [31] , LAVIE [138], Video Adapter [78],
NUWA-XL [112], Text2Performer [139]

Training-free Text2video-Zero [36] , DirecT2V [140], Free-Bloom [141] DiffSynth [142], LVD [143]

Generation with
other conditions
(§3.2)

Pose-guided DreamPose [144], Follow Your Pose [145] , Dancing Avatar [146], DisCo [96]

Motion-guided MCDiff [147], DragNUWA [148]

Sound-guided Generative Disco [149], AADiff [150] , TPoS [151]

Image-guided LaMD [72], Generative Dynamics [152] , LFDM [153]

Brain-guided MinD-Video [154]

Depth-guided Make-Your-Video [155], Animate-A-Story [76]

Multi-Modal MovieFactory [75], VideoComposer [156], CoDi [157], Mm-Diffusion [158], NExT-GPT [159]

Unconditional
Generation (§3.3)

U-Net based GD-VDM [160], PVDM [161], VIDM [73], LEO [162]

Transformer-based VDT [71]

Video Completion
(§3.4)

Enhance & Restoration LDMVFI [163], CaDM [164], VIDM [165]

Video Prediction LGC-VD [166], Seer [111], MCVD [167], RVD [168] , RaMViD [169], FDM [170]

Fig. 2: Taxonomy of Video Generation. Key aspects of Video Generation include General T2V Generation, Domain-specific Generation,
Conditional Control Generation, and Video Completion.

video generation. NUWA [172] is an unified model for T2I, T2V
and video prediction tasks based on auto-regressive Transformer.
MMVG [178] proposes an efficient mask strategy for several video
generation tasks (T2V, video prediction and video refilling).

3.1.2 Training-based T2V Diffusion Methods

In the preceding discussion, we have briefly recapitulated a few
T2V methods that do not rely on the diffusion model. Moving for-
ward, we predominantly introduce the utilization of the currently
most prominent diffusion model in the realm of T2V task.
• Early T2V Exploration Among the multitude of endeavors,
VDM [27] stands as the pioneer in devising a video diffusion
model for video generation. It extends the conventional image
diffusion U-Net [179] architecture to a 3D U-Net structure and
employs joint training with both images and videos. The condi-
tional sampling technique it employs enables generating videos
of enhanced quality and extended duration. Being the first explo-
ration of a diffusion model for T2V, it also accommodates tasks
such as unconditional generation and video prediction.

In contrast to VDM [27], which requires paired video-text
datasets, Make-A-Video [26] introduces a novel paradigm. Here,
the network learns visual-textual correlations from paired image-
text data and captures video motion from unsupervised video data.
This innovative approach reduces the reliance on data collec-
tion, resulting in the generation of diverse and realistic videos.
Furthermore, by employing multiple super-resolution models and

interpolation networks, it achieves higher-definition and frame-
rate generated videos.
• Temporal Modeling Exploration While previous approaches
leverage diffusion in pixel-level, MagicVideo [131] stands as
one of the earliest works to employ the Latent Diffusion Model
(LDM) [1] for T2V generation in latent space. By utilizing dif-
fusion models in a lower-dimensional latent space, it significantly
reduces computational complexity, thereby accelerating process-
ing speed. The introduced frame-wise lightweight adaptor aligns
the distributions of images and videos so that the proposed directed
attention can better model temporal relationships to ensure video
consistency.

Concurrently, LVDM [79] also employs the LDM [1] as its
backbone, utilizing a hierarchical framework to model the latent
space. By employing a mask sampling technique, the model
becomes capable of generating longer videos. It incorporates
techniques such as Conditional Latent Perturbation [6] and Un-
conditional Guidance [180] to mitigate performance degradation
in the later stages of auto-regressive generation tasks. With this
training approach, it can be applied to video prediction tasks, even
generating long videos consisting of thousands of frames.

ModelScope [136] incorporates spatial-temporal convolution
and attention into LDM [1] for T2V tasks. It adopts a mixed
training approach using LAION [181] and WebVid [94], and
serves as an open-source baseline1 method.

1. https://modelscope.cn/models/damo/text-to-video-synthesis/summary
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Previous methods predominantly rely on 1D convolutions
or temporal attention [131] to establish temporal relationships.
Latent-Shift [130], on the other hand, focuses on lightweight
temporal modeling. Drawing inspiration from TSM [182], it
shifts channels between adjacent frames in convolution blocks for
temporal modeling. Additionally, the model maintains the original
T2I [1] capability while generating videos.
• Multi-stage T2V methods Imagen Video [28] extends the
mature T2I model, Imagen [7], to the task of video gener-
ation. The cascaded video diffusion model is composed of
seven sub-models, with one dedicated to base video generation,
three for spatial super-resolution, and three for temporal super-
resolution. Together, these sub-models form a comprehensive
three-stage training pipeline. It validates the effectiveness of
numerous training techniques employed in T2I training, such
as classifier-free guidance [180], conditioning augmentation [6],
and v-parameterization [183]. Additionally, the authors leverage
progressive distillation techniques [183, 184] to speed up the sam-
pling time of the video diffusion model. The multi-stage training
techniques introduced therein have become effective strategies for
mainstream high-definition video generation.

Concurrently, Video LDM [35] trains a T2V network com-
posed with three training stages, including key-frame T2V gen-
eration, video frame interpolation and spatial super-resolution
modules. It adds temporal attention layer and 3D convolution
layer to the spatial layer, enabling the generation of key frames
in the first stage. Subsequently, through the implementation of a
mask sampling method, a frame interpolation model is trained,
extending key frames of short videos to higher frame rates.
Lastly, a video super-resolution model is employed to enhance
the resolution.

Similarly, LAVIE [138] employs a cascaded video diffusion
model composed of three stages: a base T2V stage, a temporal in-
terpolation stage, and a video super-resolution stage. Furthermore,
it validates that the process of joint image-video fine-tuning can
yield high-quality and creative outcomes.

Show-1 [129] first introduces the fusion of pixel-based [185]
and latent-based [1] diffusion models for T2V generation. Its
framework comprises four distinct stages, with the initial three
operating at a low resolution pixel-level: key frame generation,
frame interpolation, and super resolution. Notably, pixel-level
stages can generate videos with precise text alignment. The fourth
stage is composed of a latent super-resolution module, which
offers a cost-effective means of enhancing video resolution.
• Noise Prior Exploration While most of the methods men-
tioned denoising each frame independently through diffusion
models, VideoFusion [29] stands out by considering the content
redundancy and temporal correlations among different frames.
Specifically, it decomposes the diffusion process using a shared
base noise for each frame and residual noise along the temporal
axis. This noise decomposition is achieved through two co-training
networks. Such approach is introduced to ensure consistency in
generating frame motion, although it may lead to limited diversity.
Furthermore, the paper shows that employing T2I backbones like
DALLE-2 [2] for training T2V models accelerates convergence,
but its text embedding might face challenges in understanding
long temporal sequences of text.

PYoCo [128] acknowledges that directly extending the image
noise prior to video can yield suboptimal outcomes in T2V tasks.
As a solution, it intricately devises a video noise prior and fine-
tune the eDiff-I [186] model for video generation. The proposed

noise prior involves sampling correlated noise for different frames
within the video. The authors validate that the proposed mixed and
progressive noise models are better suited for T2V tasks.
• Datasets Contribution VideoFactory [30] takes note of the low
resolution and watermark presence in the previously widely used
WebVid [94] dataset. As a response, it constructs a large-scale
video dataset, HD-VG-130M, consisting of 130 million video-
text pairs from open-domain sources. This dataset is collected
from HD-VILA [97] via BLIP-2 [187] caption, which claims high
resolution and is devoid of watermarks. Additionally, VideoFac-
tory introduces a swapped cross-attention mechanism to facilitate
interaction between the temporal and spatial modules, resulting in
improved temporal relationship modeling. Trained on this high-
definition dataset, the approach presented in the paper is capable
of generating high-resolution videos at (1376× 768) resolution.

VidRD [135] introduces the Reuse and Diffuse framework,
which iteratively generates additional frames by reusing the orig-
inal latent representations and following the previous diffusion
process. Furthermore, it utilizes static images, long videos and
short videos when constructing the video-text dataset. For static
images, dynamic aspects are introduced through random zoom
or pan operations. Short videos [103] are annotated using BLIP-
2 [187] labeling for categorization, while long videos [188] are
first segmented and then annotated based on MiniGPT-4 [189]
to retain the required video clips. The construction of diverse
categories and distributions within video-text datasets proves to
be effective of enhancing the quality of video generation.
• Efficient Training ED-T2V [190] utilizes LDM [1] as its
backbone and freezes a substantial portion of parameters to reduce
training costs. It introduces identity attention and temporal cross-
attention to ensure temporal coherence. The approach proposed
in this paper manages to lower training costs while maintaining
comparable T2V generation performance.

SimDA [31] devises a parameter-efficient training approach
for T2V tasks by maintaining the parameter of T2I model [1]
fixed. It incorporates a lightweight spatial adapter for transferring
visual information for T2V learning. Additionally, it introduces a
temporal adapter to model temporal relationships in lower feature
dimensions. The proposed latent shift attention aids in maintaining
video consistency. Moreover, the lightweight architecture enables
speed up inference and makes it adaptable for video editing tasks.
• Personalized Video Generation Personalized video generation
generally refers to creating videos tailored to a specific protagonist
or style, addressing the generation of videos customized for per-
sonal preferences or characteristics. AnimateDiff [77] notices the
success of LoRA [191] and Dreambooth [5] in personalized T2I
models and aims to extend their effectiveness to video animation.
Furthermore, the authors aim at training a model that can be
adapted to generate diverse personalized videos, without the need
of repeatedly retraining on video datasets. This involves using a
T2I model as a base generator and adding a motion module to
learn motion dynamics. During inference, the personalized T2I
model can replace the base T2I weights, enabling personalized
video generation.
• Removing Artifacts To address the issue of flickers and artifacts
in T2V-generated videos, DSDN [132] introduces a dual-stream
diffusion model, one for video content and the other for motion. In
this way, it can maintain a strong alignment between content and
motion. By decomposing the video generation process into content
and motion components, it is possible to generate continuous
videos with fewer flickers.



7

VideoGen [137] first utilizes a T2I model [1] to generate
images based on the text prompt, which serves as a reference
image for guiding video generation. Subsequently, an efficient
cascaded latent diffusion module is introduced, employing flow-
based temporal upsampling steps to enhance temporal resolution.
Compared to previous methods, introducing a reference image
improves visual fidelity and reduces artifacts, allowing the model
to focus more on learning video dynamics.
• Complex Dynamics Modeling The generation of Text-to-Video
(T2V) encounters challenges in modeling complex dynamics,
particularly regarding disruptions in action coherence. To address
this, Dysen-VDM [134] introduces a method that transforms
textual information into dynamic scene graphs. Leveraging Large
Language Model (LLM) [171], Dysen-VDM [134] identifies piv-
otal actions from input text and arranges them chronologically,
enriching scenes with pertinent descriptive details. Furthermore,
the model benefits from in-context learning of LLM, endowing
it with robust spatio-temporal modeling. This approach demon-
strates remarkable superiority in the synthesis of complex actions.

VideoDirGPT [133] also utilizes LLM to plan the generation
of video content. For a given text input, it is expanded into a video
plan through GPT-4 [192], which includes scene descriptions, enti-
ties along with their layouts, and the distribution of entities within
backgrounds. Subsequently, corresponding videos are generated
by the model with explicit control over layouts. This approach
demonstrates significant advantages in layout and motion control
for complex dynamic video generation.
• Domain-specific T2V Generation Video-Adapter [78] intro-
duces a novel setting by transferring pre-trained general T2V mod-
els to domain-specific T2V tasks. By decomposing the domain-
specific video distribution into pretrained noise and a small train-
ing component, it substantially reduces the cost of transferring
training. The efficacy of this approach is verified in T2V genera-
tion for Ego4D [193] and Bridge Data [108] scenarios.

NUWA-XL [112] employs a coarse-to-fine generative
paradigm, facilitating parallel video generation. It initially em-
ploys global diffusion to generate keyframes, followed by utilizing
a local diffusion model to interpolate between two frames. This
methodology enables the creation of lengthy videos spanning up
to 3376 frames, thus establishing a benchmark for the generation
of animations. This work focuses on the field of cartoon video
generation, utilizing its techniques to produce cartoon videos
lasting several minutes.

Text2Performer [139] decomposes human-centric videos into
appearance and motion representations. It first employs unsuper-
vised training on natural human videos using a VQVAE [174]
latent space to disentangle appearance and pose representations.
Subsequently, it utilizes a continuous VQ-diffuser [194, 195] to
sample continuous pose embeddings. Finally, the authors employ
a motion-aware masking strategy in the spatio-temporal domain
on the pose embeddings to enhance temporal correlations.

3.1.3 Training-free T2V Diffusion Methods

While former methods are all training-based T2V approaches that
typically rely on extensive datasets like WebVid [94] or other
video datasets [97, 99]. Some recent researches [36, 141] aim
at reducing heavy training costs by developing training-free T2V
approaches, as will be introduced next.

Text2Video-Zero [36] utilizes the pre-trained T2I model Stable
Diffusion [1] for video synthesis. To maintain consistency across

different frames, it performs a Cross-Attention mechanism be-
tween each frame and the first frame. Additionally, it enriches mo-
tion dynamics by modifying the sampling method of latent code.
Moreover, this method can be combined with conditional gener-
ation and editing techniques such as ControlNet [4] and Instruct-
Pix2Pix [17], enabling the controlled generation of videos.

DirecT2V [140] and Free-Bloom [141], on the other hand, in-
troduce large language model (LLM) [192, 196] to generate frame-
to-frame descriptions based on a single abstract user prompt. LLM
directors are employed to breakdown user input into frame-level
descriptions. Additionally, to maintain continuity between frames,
DirecT2V [140] uses a novel value mapping and dual-softmax
filtering approach. Free-Bloom [141] proposes a series of reverse
process enhancements, which encompass joint noise sampling,
step-aware attention shifting, and dual-path interpolation. Experi-
mental results demonstrate these modifications enhance the zero-
shot video generation capabilities.

To handle intricate spatial-temporal prompts, LVD [143] first
utilizes LLM [192] to generate dynamic scene layouts and then
employs these layouts to guide video generation. Its approach re-
quires no training and guides video diffusion models by adjusting
attention maps based on the layouts, enabling the generation of
complex dynamic videos.

DiffSynth [142] proposes a latent in-iteration deflickering
framework and a video deflickering algorithm to mitigate flick-
ering and generate coherent videos. Moreover, it can be applied to
various domains, including video stylization and 3D rendering.

3.2 Video Generation with other Conditions

Most of the previously introduced methods pertains to text-to-
video generation. In this subsection, we focus on video generation
conditioned on other modalities (e.g. pose, sound and depth). We
show the condition-controlled video generation examples in Fig. 3.

3.2.1 Pose-guided Video Generation
Follow Your Pose [145] presents a video generation model driven
by pose and text control. It employs a two-stage training process
by utilizing image-pose pairs and pose-free videos. In the first
stage, a T2I (Text-to-Image) model is finetuned using (image,
pose) pairs, enabling pose-controlled generation. In the second
stage, the model leverages unlabeled videos for learning temporal
modeling by incorporating temporal attention and cross-frame
attention mechanisms. This two-stage training imparts the model
with both pose control and temporal modeling capabilities.

Dreampose [144] constructs a dual-path CLIP-VAE [117]
image encoder and adapter module to replace the original CLIP
text encoder in LDM [1] as the conditioning component. Given a
single human image and a pose sequence, this study can generate
a corresponding human pose video based on the provided pose
information.

Dancing Avatar [146] focuses on synthesizing human dance
videos. It utilizes a T2I model [1] to generate each frame of
the video in an auto-regressive manner. To ensure consistency
throughout the entire video, a frame alignment module combined
with insights from ChatGPT [171] is utilized to enhance coherence
between adjacent frames. Additionally, it leverages OpenPose
ControlNet [4] to harness the ability to generate high-quality
human body videos based on poses.

Disco [96] addresses a novel problem setting known as re-
ferring human dance generation. It leverage the ControlNet [4],
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(a) Pose Guided (b) Depth Guided

(e) Audio Guided (f) Multi-modal Guided

A 3D render of a 
garden, with a 
dreamy ultra 
wide shot. fire crackling

(c) Motion Guided

Style MotionDepth Sketch

Rotation view of a beautiful long haired
woman standing in the forest.Text Prompt

Text Prompt Image Input Audio Input

(d) Text Guided

Coffee pouring into a cup, 4k, high resolution.

A cat wearing sunglasses and working as a lifeguard at a pool.

Fig. 3: Conditional video generation results with (a) Pose Guided [145], (b) Depth Guided [155], (c) Motion Guided [147], (d) Text
Guided [31], (e) Audio Guided [151] and (f) Multi-modal Guided [156].

Grounded-SAM [197] and OpenPose [198] for background con-
trol, foreground extraction and pose skeleton extraction respec-
tively. Moreover, large-scale image datasets [181, 199, 200] are
employed for human attribute pre-training. By combining these
training steps, Disco [96] lays a solid foundation for human-
specific video generation tasks.

3.2.2 Motion-guided Video Generation
MCDiff [147] is the pioneer in considering motion as a condition
for controlling video synthesis. The approach involves providing
the first frame of a video along with a sequence of stroke motions.
Initially, a flow completion model [201] is utilized to predict dense
video motion based on sparse stroke motion control. Subsequently,
the model employs an auto-regressive approach using the dense
motion map to predict subsequent frames, ultimately resulting in
the synthesis of a complete video.

DragNUWA [148] simultaneously introduce text, image, and
trajectory information to provide fine-grained control over video
content from semantic, spatial and temporal perspectives. To
further address the lack of open-domain trajectory control in
previous works, the authors proposed a Trajectory Sampler (TS) to
enable open-domain control of arbitrary trajectories, a Multiscale
Fusion (MF) to control trajectories in different granularities, and
an Adaptive Training (AT) strategy to generate consistent video
following trajectories.

3.2.3 Sound-guided Video Generation
AADiff [150] introduces the concept of using audio and text
together as conditions for video synthesis. The approach starts by
separately encoding text and audio using dedicated encoders [202].
Then, the similarity between the text and audio embeddings is
computed, and the text token with the highest similarity is selected.
This selected text token is used in a prompt2prompt [18] fashion
to edit frames. This approach enables the generation of audio-
synchronized videos without requiring any additional training.

Generative Disco [149] is an AI system designed for text-
to-video generation aimed at music visualization. The system
employs a pipeline that involves a large language model [192]
followed by a text-to-image model [1] to achieve its goals.

TPoS [151] integrates audio inputs with variable temporal
semantics and magnitude, building upon the foundation of the
LDM [1] to extend the utilization of audio modality in generative
models. This approach outperforms widely-used audio-to-video
benchmarks, as demonstrated by objective evaluations and user
studies, highlighting its superior performance.

3.2.4 Image-guided Video Generation
LaMD [72] first trains an autoencoder to separate motion infor-
mation within videos. Then a diffusion-based motion generator
is trained to generate video motion. Through this methodology,
guided by motion, the model achieves the capability to generate
high-quality perceptual videos given the first frame.

LFDM [153] leverages conditional images and text for human-
centric video generation. In the initial stage, a latent flow auto-
encoder is trained to reconstruct videos. Moreover, a flow pre-
dictor [203] can be employed in intermediary steps to predict
flow motion. Subsequently, in the second stage, a diffusion model
is trained with image, flow, and text prompts as conditions to
generate coherent videos.

Generative Dynamics [152] presents an approach to modeling
scene dynamics in image space. It extracts motion trajectories
from real video sequences exhibiting natural motion. For a sin-
gle image, the diffusion model, through a frequency-coordinated
diffusion sampling process, predicts a long-term motion repre-
sentation in the Fourier domain for each pixel. This representation
can be converted into dense motion trajectories spanning the entire
video. When combined with an image rendering module, it enables
the transformation of static images into seamless looping dynamic
videos, facilitating realistic user interactions with the depicted
objects.

3.2.5 Brain-guided Video Generation
MinD-Video [154] is the pioneering effort to explore video gen-
eration through continuous fMRI data. The approach begins by
aligning MRI data with images and text using contrastive learning.
Next, a trained MRI encoder replaces the CLIP text encoder
as the input for conditioning. This is further enhanced through
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the design of a temporal attention module to model sequence
dynamics. The resultant model is capable of reconstructing videos
that possess precise semantics, motions, and scene dynamics,
surpassing groundtruth performance and setting a new benchmark
in this field.

3.2.6 Depth-guided Video Generation

Make-Your-Video [155] employs a novel approach for text-depth
condition video generation. It integrates depth information as a
conditioning factor by extracting it using MiDas [204] during
training. Additionally, the method introduces a causal attention
mask to facilitate the synthesis of longer videos. Comparisons
with state-of-the-art techniques demonstrate the method’s superi-
ority in controllable text-to-video generation, showcasing better
quantitative and qualitative performance.

In Animate-A-Story [76], an innovative approach is introduced
that divides video generation into two steps. The first step, Motion
Structure Retrieval, involves retrieving the most relevant videos
from a large video database based on a given text prompt [94].
Depth maps of these retrieved videos are obtained using offline
depth estimation methods [204], which then serve as motion
guidance. In the second step, Structure-Guided Text-to-Video
Synthesis is employed to train a video generation model guided
by the structural motion derived from the depth maps. Such two-
step approach enables the creation of personalized videos based
on customized text descriptions.

3.2.7 Multi-modal guided Video Generation

VideoComposer [156] focuses on video generation conditioned
on multi-modal, encompassing textual, spatial, and temporal con-
ditions. Specifically, it introduces a Spatio-Temporal Condition
encoder that allows flexible combinations of various conditions.
This ultimately enables the incorporation of multiple modalities,
such as sketch, mask, depth, and motion vectors. By harnessing
control from multiple modalities, VideoComposer [156] achieves
higher video quality and improved detail in the generated content.

MM-Diffusion [158] represents the inaugural endeavor in joint
audio-video generation. To realize the generation of multimodal
content, it introduces a bifurcated architecture comprising two
subnets tasked with video and audio generation, respectively. To
ensure coherence between the outputs of these two subnets, a
random-shift based attention block has been devised to establish
interconnections. Beyond its capacity for unconditional audio-
video generation, MM-Diffusion [158] also exhibits pronounced
aptitude in effectuating video-to-audio translation.

MovieFactory [75] is dedicated to applying the diffusion
model to the generation of film-style videos. It leverages Chat-
GPT [171, 205] to elaborate on user-provided text, creating com-
prehensive sequential scripts for the purpose of movie generation.
In addition, an audio retrieval system has been devised to provide
voice overs for videos. Through the aforementioned techniques,
the realization of generating multi-modal audio-visual content is
achieved.

CoDi [157] presents a novel generative model that possesses
the capability of creating diverse combinations of output modal-
ities, encompassing language, images, videos, or audio, from
varying combinations of input modalities. This is achieved by
constructing a shared multimodal space, facilitating the generation
of arbitrary modality combinations through the alignment of input
and output spaces across diverse modalities.

NExT-GPT [159] presents an end-to-end, any-to-any multi-
modal LLM system. It integrates LLM [206] with multimodal
adapters and diverse diffusion decoders, enabling the system to
perceive input in arbitrary combinations of text, images, videos,
and audio, and generate corresponding output. During training,
it fine-tunes only a small subset of parameters. Additionally,
it introduces a modality-switching instruction tuning (MosIT)
mechanism and manually curates a high-quality MosIT dataset.
This dataset facilitates the acquisition of complex cross-modal
semantic understanding and content generation capabilities.

3.3 Unconditional Video Generation

In this section, we delve into unconditional video generation.
It refers to generating videos that belong to specific domain
without extra condition. The focal points of these studies revolve
around the design of video representations and the architecture of
diffusion model networks.
• U-Net based Generation As one of the earliest works on un-
conditional video diffusion models and later serves as a significant
baseline method, VIDM [73] utilizes two streams: the content
generation stream for video frame content generation, and the
motion stream which defines video motion. By merging these two
streams, consistent videos are generated. Furthermore, the authors
employ Positional Group Normalization (PosGN) [69] to enhance
video continuity and explore the combination of Implicit Motion
Condition (IMC) and PosGN to address the generation consistency
of long videos.

Similar to LDM [1], PVDM [161] first trains an auto-encoder
to map pixels into a lower-dimensional latent space, followed
by applying a diffusion denoising generative model in the latent
space to synthesize videos. This approach reduces both training
and inference costs while capable of maintaining satisfactory
generation quality.

Primarily focusing on synthesizing driving scene videos, GD-
VDM [160] first generate depth map videos where scene and
layout generation are prioritized whereas fine details and textures
are abstracted away. Then, the generated depth maps are provided
as a conditioning signal to further generate the remaining details
of the video. This methodology retains superior detail generation
capabilities and is particularly applicable to complex driving scene
video generation tasks.

LEO [162] involves representing motion within the generation
process through a sequence of flow maps, thereby inherently
separating motion from appearance. It achieves human video gen-
eration through the combination of a flow-based image animator
and a Latent Motion Diffusion Model. The former learns the
reconstruction from flow maps to motion codes, while the latter
captures motion priors to obtain motion codes. The synergy of
these two methods enables effective learning of human video cor-
relations. Furthermore, this approach can be extended to tasks such
as infinite-length human video synthesis and content-preserving
video editing.
• Transformer-based Generation Different from most methods
based on the U-Net [179] structure, VDT [71] pioneers the
exploration of a video diffusion model grounded in the Trans-
former [207, 208] architecture. Leveraging the versatile scalability
of Transformers, the authors investigate various temporal model-
ing approaches. Additionally, they apply VDT [71] to multiple
tasks such as unconditional generation and video prediction.
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3.4 Video Completion

Video completion constitutes a pivotal task within the realm of
video generation. In the subsequent sections, we will delineate
the distinct facets of video enhancement and restoration and video
prediction.

3.4.1 Video Enhancement and Restoration
CaDM [164] introduces a novel Neural-enhanced Video Streaming
paradigm aimed at substantially diminishing streaming delivery
bitrates, all the while maintaining a notably heightened restoration
capability in contrast to prevailing methodologies. Primarily, the
proposed CaDM [164] approach improve the compression effi-
cacy of the encoder through the concurrent reduction of frame
resolution and color bit-depth in video streams. Furthermore,
CaDM [164] empowers the decoder with superior enhancement
capabilities by imbuing the denoising diffusion restoration process
with an awareness of the resolution-color conditions stipulated by
the encoder.

LDMVFI [163] stands as the inaugural endeavor that em-
ploys a conditional latent diffusion model approach to address
the video frame interpolation (VFI) task. In order to harness
latent diffusion models for VFI, this work introduces a range of
pioneering concepts. Notably, a video frame interpolation-specific
autoencoding network is proposed, which integrates efficient self-
attention modules and employs deformable kernel-based frame
synthesis techniques to substantially enhance the performance.

VIDM [165] capitalizes on the pre-trained LDM [1] to address
the task of video inpainting. By furnishing a mask for first-person
perspective videos, the method leverages the image completion
prior of LDM to generate inpainted videos.

3.4.2 Video Prediction
Seer [111] is dedicated to the exploration of the text-guided video
prediction task. It leverages the Latent Diffusion Model (LDM)
as its foundational backbone. Through the integration of spatial-
temporal attention within an auto-regressive framework, alongside
the implementation of the Frame Sequential Text Decomposer
module, Seer adeptly transfers the knowledge priors of Text-to-
Image (T2I) models to the domain of video prediction. This mi-
gration has led to substantial performance enhancements, notably
demonstrated on benchmarks [106, 108].

FDM [170] introduces a novel hierarchy sampling scheme
for the purpose of long video prediction task. Additionally, a
new CARLA [209] dataset is proposed. In comparison to auto-
regressive methods, the proposed approach is not only more
efficient but also yields superior generative outcomes.

MCVD [167] employs a probabilistic conditional score-based
denoising diffusion model for both unconditional generation and
interpolation tasks. The introduced masking approach is capable of
masking all past or future frames, thereby enabling the prediction
of frames from either the past or the future. Additionally, it adopts
an autoregressive approach to generate videos of variable lengths
in a block-wise fashion. The effectiveness of MCVD [167] is
validated across various benchmarks [101, 102, 104] for both
prediction and interpolation tasks.

Due to the tendency of autoregressive methods to yield
implausible outcomes during the generation of lengthy videos,
LGC-VD [166] introduces a Local-Global Context guided Video
Diffusion model designed to encompass diverse perceptual condi-
tions. LGC-VD employs a two-stage training approach and treats

prediction errors as a form of data augmentation. This strategy
effectively addresses prediction errors and notably reinforces sta-
bility in the context of long video prediction tasks.

RVD [168](Residual Video Diffusion) adopts a diffusion
model that utilizes the context vector of a convolutional Recurrent
Neural Network (RNN) as condition to generate a residual, which
is then added to a deterministic next-frame prediction. The authors
demonstrate that employing residual prediction is more effective
than directly predicting future frames. This work extensively
compares with previous methods based on Generative Adversarial
Networks (GANs) and Variational Autoencoders (VAEs) across
various benchmarks, providing substantial evidence of its efficacy.

RaMViD [169] employs 3D convolutions to extend the image
diffusion model into the realm of video tasks. It introduces a novel
conditional training technique and utilizes a mask condition to ex-
tend its applicability to various completion tasks, including video
prediction [104, 107], infilling [104], and upsampling [101, 107].

3.5 Benchmark Results
This section conducts a systematic comparison of various methods
for video generation task under two different settings, zero-shot
and finetuned. For each setting, we start by introducing their
commonly used datasets. Subsequently, we state the detailed eval-
uation metrics utilized for each of the dataset. Finally, we present
a comprehensive comparison of the methods’ performances.

3.5.1 Zero-shot T2V Generation
• Datasets. General T2V methods, such as Make-A-Video [26]
and VideoLDM [35], are primarily evaluated on the MSRVTT [84]
and UCF-101 [101] datasets in a zero-shot manner. MSRVTT [84]
is a video retrieval dataset, where each video clip is accompanied
by approximately 20 natural sentences for description. Typically,
the textual descriptions corresponding to the 2,990 video clips in
its test set are utilized as prompts to produce the corresponding
generated videos. UCF-101 [101] is an action recognition dataset
with 101 action categories. In the context of T2V models, videos
are typically generated based on the category names or manually
set prompts corresponding to these action categories.
• Evaluation Metrics. When evaluating under the zero-shot
setting, it is common practice to assess video quality using
FVD [121] and FID [114] metrics on the MSRVTT [84] dataset.
CLIPSIM [117] is used to measure the alignment between text
and video. For the UCF-101 [101] dataset, the typical evaluation
metrics include Inception Score [125], FVD [121], and FID [114]
to evaluate the quality of generated videos and their frames.
• Results Comparison. In Table 3, we present the zero-shot
performance of current general T2V methods on MSRVTT [84]
and UCF-101 [101]. We also provide information about their pa-
rameter number, training data, extra dependencies, and resolution.
It can be observed that methods relying on ChatGPT [134] or
other input conditions [76, 155] exhibit a significant advantage
over others, and the utilization of additional data [26, 30, 99] often
leads to improved performance.

3.5.2 Finetuned Video Generation
• Datasets. Finetuned video generation methods refer to generat-
ing videos after fine-tuning on a specific dataset. This typically in-
cludes unconditional video generation and class conditional video
generation. It primarily focus on three specific datasets: UCF-
101 [101], Taichi-HD [82], and Time-lapse [83]. These datasets
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Method Year Training Data Extra
Dependency

Resolution Params(B) MSRVTT [84] UCF-101 [101]

FID(↓) FVD(↓) CLIPSIM(↑) FID(↓) FVD(↓) IS(↑)
Non-diffusion based method

CogVideo [173] 2022 [94](5.4M) - 256× 256 15.5 23.59 1294 0.2631 179.00 701.59 25.27
MMVG [178] 2023 [94](2.5M) - 256× 256 - - - 0.2644 - - -

Diffusion based method
LVDM [79] 2022 [94](2M) - 256× 256 1.16 - 742 0.2381 - 641.8 -

MagicVideo [131] 2022 [94](10M) - 256× 256 - - 998 - 145.00 699.00 -
Make-A-Video [26] 2022 [94, 97] - 256× 256 9.72 13.17 - 0.3049 - 367.23 33.00

ED-T2V [190] 2023 [94](10M) - 256× 256 1.30 - - 0.2763 - - -
InternVid [99] 2023 [94](10M) + 18M* - 256× 256 - - - 0.2951 60.25 616.51 21.04

Video-LDM [35] 2023 [94](10M) - 256× 256 4.20 - - 0.2929 - 550.61 33.45
VideoComposer [156] 2023 [94](10M) - 256× 256 1.85 - 580 0.2932 - - -

Latent-shift [130] 2023 [94](10M) - 256× 256 1.53 15.23 - 0.2773 - - -
VideoFusion [29] 2023 [94](10M) - 256× 256 1.83 - 581 0.2795 75.77 639.90 17.49

Make-Your-Video [155] 2023 [94](10M) Depth Input 256× 256 - - - - - 330.49
PYoCo [128] 2023 [94] (22.5M) - 256× 256 - 9.73 - - - 355.19 47.76

CoDi [157] 2023 [94, 97] - 512× 512 - - - 0.2890 - - -
NExT-GPT [159] 2023 [94, 97] - 320× 576 1.83 13.04 - 0.3085 - - -

SimDA [31] 2023 [94](10M) - 256× 256 1.08 - 456 0.2945 - - -
Dysen-VDM [134] 2023 [94](10M) ChatGPT 256× 256 - 12.64 0.3204 - 325.42 35.57
VideoFactory [30] 2023 [94, 97] - 256× 256 2.04 - - 0.3005 - 410.00 -
ModelScope [136] 2023 [94](10M) - 256× 256 1.70 11.09 550 0.2930 - 410.00 -

VideoGen [137] 2023 [94](10M) Reference Image 256× 256 - - - 0.3127 - 554.00 71.61
Animate-A-Story [76] 2023 [94](10M) Depth Input 256× 256 - - - - - 515.15

VidRD [135] 2023 [94, 103, 188](5.3M*) - 256× 256 - - - - - 363.19 39.37
LAVIE [138] 2023 [94](10M)+25M* - 320× 512 3.00 - - 0.2949 - 526.30 -

VideoDirGPT [133] 2023 [94](10M) GPT-4 256× 256 1.92 12.22 550 0.2860 - - -
Show-1 [129] 2023 [94](10M) - 320× 576 - 13.08 538 0.3072 - 394.46 35.42

LVD [143] 2023 training-free - 512× 512 1.70 - 521 - - 861.00 -

TABLE 3: Zero-shot Text-to-Video generation comparison on MSR-VTT [84] and UCF-101 [101] dataset. We report the Fréchet
Video Distance (FVD) scores, CLIPSIM scores, Fréchet Image Distance (FID) and Inception Score (IS). The dataset marked with “*”
indicates the use of a self-collected dataset.

are associated with distinct domains: UCF-101 concentrates on
human sports, Taichi-HD mainly comprises Tai Chi videos, and
Time-lapse predominantly features time-lapse footage of the sky.
Additionally, there are several other benchmarks available [102–
104], but we choose these three as they are the most commonly
used ones.
• Evaluation Metrics. In the evaluation of the Finetuned Video
Generation task, commonly used metrics for the UCF-101 [101]
dataset include IS [125] (Inception Score) and FVD [121]
(Fréchet Video Distance). For the Time-lapse [83] and Taichi-
HD [82] datasets, common evaluation metrics include FVD and
KVD [123].
• Results Comparison. In Table 4, we present the perfor-
mance of current state-of-the-art methods fine-tuned on bench-
mark datasets. Similarly, further details regarding the method type,
resolution, and extra dependencies are provided. It is evident that
diffusion-based methods exhibit a significant advantage compared
to traditional GANs [210, 212, 213] and autoregressive Trans-
former [173, 215] methods. Furthermore, if there is a large-scale
pretraining or class conditioning, the performance tends to be
further enhanced.

4 VIDEO EDITING

With the development of diffusion models, there has been an expo-
nential growth in the number of research studies in video editing.
As a consensus of many researches [74, 229, 232, 235], video
editing tasks should satisfy the following criteria: (1) fidelity:
each frame should be consistent in content with the corresponding
frame of the original video; (2) alignment: the output video
should be aligned with the input control information; (3) quality:
the generated video should be temporal consistent and in high
quality. While a pre-trained image diffusion model can be utilized
for video editing by processing frames individually, the lack of
semantic consistency across frames renders editing a video frame

by frame infeasible, making video editing a challenging task. In
this section, we divide video editing into three categories: Text-
guided video editing (Sec. 4.1), Modality-guided video editing
(Sec. 4.2), and Domain-specific video editing (Sec. 4.3). The
taxonomy details of video editing is summarized in Fig. 4.

4.1 Text-guided Video Editing
In text-guided video editing, the user provides an input video and a
text prompt which describes the desired attributes of the resulting
video. Yet, unlike image editing, text-guided video editing repre-
sents new challenges of frame consistency and temporal modeling.
In general, there are two main ways for text-based video editing:
(1) training a T2V diffusion model on a large-scale text-video pairs
dataset and (2) extending the pre-trained T2I diffusion models for
video editing. The latter garnered more interest due to the fact that
large-scale text-video datasets are hard to acquire, and training a
T2V model is computationally expensive. To capture motion in
videos, various temporal modules are introduced to T2I models.
Nonetheless, methods inflating T2I models suffer from two critical
issues: Temporal inconsistency, where the edited video exhibits
flickering in vision across frame, and Semantic disparity, where
videos are not altered in accordance with the semantics of given
text prompts. Several studies address the problems from different
perspectives.

4.1.1 Training-based Methods
The training-based approach refers to the method of training on
a large-scale video-text dataset, enabling it to serve as a general
video editing model.

GEN-1 [38] proposes a structure and content-aware model
that provides full control over temporal, content, and structural
consistency. This model introduces temporal layers into a pre-
trained T2I model and trains it jointly on images and videos,
achieving real-time control over temporal consistency.



12

Method Year Type Resolution Extra UCF-101 [101] Taichi-HD [82] Time-lapse [83]

FVD(↓) IS(↑) FVD(↓) KVD(↓) FVD (↓) KVD(↓)

MoCoGAN [210] 2018 GAN 64× 64 - - 12.42 - - 206.6 -
TGANv2 [125] 2020 GAN 128× 128 - - 26.60 - - - -

StyleGAN-V [211] 2022 GAN 256× 256 - - 23.94 - - 79.52 -
MoCoGAN-HD [212] 2021 GAN 256× 256 - 700 33.95 144.7 25.4 183.6 13.9

DIGAN [213] 2022 GAN 128× 128 - 577 32.70 128.1 20.6 114.6 6.8
StyleInV [214] 2023 GAN 256× 256 - - - 186.72 - 77.04 -
MMVG [178] 2023 VQGAN 128× 128 - - 58.3 395 - - -

VideoGPT [215] 2021 Autoregressive 64× 64 - - 24.69 - - 222.7 -
CCVS [216] 2021 Autoregressive 128× 128 - 386 24.47 - - - -
TATS [217] 2022 Autoregressive 128× 128 Class Condition 278 79.28 94.6 9.8 132.6 5.7

CogVideo [173] 2022 Autoregressive 160× 160 Pretrain+Class Condition 626 50.46 - - - -

VDM [27] 2022 Diffusion 64× 64 - - 57.80 - - - -
LVDM [79] 2022 Diffusion 256× 256 - 372 27.00 99 15.3 95.2 3.9
VIDM [73] 2022 Diffusion 256× 256 - 294.7 - 121.9 - 57.4 -
LEO [162] 2022 Diffusion 256× 256 - - - 122.7 -20.49 57.4 -

VideoFusion [29] 2023 Diffusion -128× 128 - 220 72.22 56.4 6.9 47.0 5.3
PVDM [161] 2023 Diffusion 256× 256 - 343.6 74.40 - - 55.41 -

VDT [71] 2023 Diffusion 64× 64 - 283.0 - - - - -
PYoCo [128] 2023 Diffusion 256× 256 - 310 60.01 - - - -

Dysen-VDM [134] 2023 Diffusion 256× 256 ChatGPT 255.42 95.23 - - - -
Latent-Shift [130] 2022 Diffusion 256× 256 Class Condition 360 92.72 - - - -

ED-T2V [190] 2023 Diffusion 256× 256 Class Condition 320 83.36 - - - -
Make-A-Video [26] 2023 Diffusion 256× 256 Pretrain+Class Condition 81.25 -82.55 - - - -

VideoGen [137] 2023 Diffusion 256× 256 Pretrain+Class Condition 345 82.78 - - - -

TABLE 4: Finetuned video generated results of UCF-101 [101], Taichi-HD [82] and Time-lapse [83]. We report the FVD, IS and KVD
scores evaluation metric of clips with 16 frames. Besides, we also report the resolution of each video frame for each evaluation result.
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Training-based GEN-1 [38], Dreamix [74], TCVE [218], MagicEdit [40]
Control-A-Video [219], MagicProp [220]

Training-free

TokenFlow [221], EVE [222], VidEdit [223], FateZero [39]
Rerender-A-Video [224], Pix2Video [225], MeDM [226],
Ground-A-Video [227], Vid2Vid-Zero [228], InFusion [229]
ControlVideo1 [127], Gen-L-Video [230], FLATTEN [231]

One-shot-tuned
SAVE [120], StableVideo [232], Shape-aware TLVE [233]
Edit-A-Video [80], SinFusion [234], ControlVideo2 [235]
EI2 [236], Tune-A-Video [37], Video-P2P [237]

Modality
guided (§4.2)

Instruct-guided Instruct-vid2vid[238], CSD [239]

Sound-guided Soundini [240], SDVE [241]

Motion-guided VideoControlNet [242]

Multi-Modal Make-A-Protagonist [243] , CCEdit [41]

Domain
Specific (§4.3)

Recolor&Restyle ColorDiffuser [244], Style-A-Video [245]

Human Video Diffusion Video Autoencoders [246], TGDM [247]
Instruct-Video2Avatar [248]

Fig. 4: Taxonomy of Video Editing. Key aspects of Video Editing include General
Text-guided Video Editing, Modality-guided Video Editing and Domain-specific
Video Editing.
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Fig. 5: Taxonomy of diffusion-based Video
Understanding.

The high fidelity of Dreamix [74] results from two primary
innovations: initializing generation using a low-resolution version
of the original video and fine-tuning the generation model on the
original video. They further propose a mixed fine-tuning approach
with full temporal attention and temporal attention masking,
significantly improving motion editability.

TCVE [218] proposes a Temporal U-Net, which effectively
captures the temporal coherence of input videos. To connect
the Temporal U-Net and the pre-trained T2I U-Net, the authors
introduce a cohesive spatial-temporal modeling unit.

Control-A-Video [219] is based on a pre-trained T2I diffusion
model, incorporating a spatio-temporal self-attention module and

trainable temporal layers. Additionally, they propose a first-frame
conditioning strategy (i.e., generating video sequences based on
the first frame), allowing Control-A-Video to produce videos of
any length using an auto-regressive method.

Unlike most current methods simultaneously modeling ap-
pearance and temporal representation within a single framework,
MagicEdit [40] innovatively separates the learning of content,
structure, and motion for high fidelity and temporal coherence.

MagicProp [220] divides the video editing task into appear-
ance editing and motion-aware appearance propagation, achieving
temporal consistency and editing flexibility. They first select a
frame from the input video and edit its appearance as a reference.
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Then, they use an image diffusion model to auto-regressively
generate the target frame, controlled by its previous frame, target
depth, and reference appearance.

4.1.2 Training-free Methods

Training-free approach involves utilizing pre-trained T2I or T2V
models and adapting them for video editing tasks in a zero-
shot manner. Compared to training-based methods, training-free
methods require no heavy training cost. However, they may suffer
a few potential drawbacks. First of all, videos edited in a zero-shot
manner may produce spatio-temporal distortion and inconsistency.
Furthermore, methods utilizing T2V models might still incur high
training and inference costs. We briefly examine the techniques
used to address these issues.

TokenFlow [221] demonstrates that consistency in edited
videos can be achieved by enforcing consistency in the diffusion
feature space. Specifically, this is accomplished by sampling key
frames, jointly editing them, and propagating the features from
the key frames to all other frames based on the correspondences
provided by the original video features. This process explicitly
maintains consistency and a fine-grained shared representation of
the original video features.

VidEdit [223] combines atlas-based [260] and pre-trained
T2I [1] models, which not only exhibit high temporal consistency
but also provide object-level control over video content appear-
ance. The method involves decomposing videos into layered neu-
ral atlases with a semantically unified representation of content,
and then applying a pre-trained, text-driven image diffusion model
for zero-shot atlas editing. Concurrently, it preserves structure in
atlas space by encoding both temporal appearance and spatial
placement.

Rerender-A-Video [224] employs hierarchical cross-frame
constraints to enforce temporal consistency. The key idea involves
using optical flow to apply dense cross-frame constraints, with the
previously rendered frame serving as a low-level reference for the
current frame and the first rendered frame acting as an anchor to
maintain consistency in style, shape, texture, and color.

To address the issues of heavy costs in atlas learning [260] and
per-video tuning [37], FateZero stores comprehensive attention
maps at every stage of the inversion process to maintain superior
motion and structural information. Additionally, it incorporates
spatial-temporal blocks to enhance visual consistency.

Vid2Vid-Zero [228] utilizes a null-text inversion [261] module
to align text with video, a spatial regularization module for video-
to-video fidelity, and a cross-frame modeling module for temporal
consistency. Similar to FateZero [39], it also incorporates a spatial-
temporal attention module.

Pix2Video [225] initially utilizes a pre-trained structure-
guided T2I model to conduct text-guided edits on an anchor frame,
ensuring the generated image remains true to the edit prompt.
Subsequently, they progressively propagate alterations to future
frames using self-attention feature injection, maintaining temporal
coherence.

InFusion [229] comprises two main components: first, it
incorporates features from the residual block in decoder layers
and attention features into the denoising pipeline for the editing
prompt, highlighting its zero-shot editing capability. Second, it
merges the attention for edited and unedited concepts by em-
ploying the mask extraction obtained from cross-attention maps,
ensuring consistency.

ControlVideo1 [127] directly adopts the architecture and
weights from ControlNet [4], extending self-attention with fully
cross-frame interaction to achieve high-quality and consistency.
To manage long-video editing tasks, it implements a hierarchical
sampler that divides the long video into short clips and attains
global coherence by conditioning on pairs of key frames.

EVE [222] proposes two strategies to reinforce temporal con-
sistency: Depth Map Guidance to locate spatial layouts and motion
trajectories of moving objects as well as Frame-Align Attention
which forces the model to place attention on both previous and
current frames.

MeDM [226] utilizes explicit optical flows to establish a prag-
matic encoding of pixel correspondences across video frames, thus
maintaining temporal consistency. Furthermore, they iteratively
align noisy pixels across video frames using the provided temporal
correspondence guidance derived from optical flows.

Gen-L-Video [230] explores long video editing by treating
long videos as temporally overlapping short videos. Through
the proposed Temporal Co-Denoising methods, it extends off-
the-shelf short video editing models [37, 79, 225] to handle
editing videos comprising hundreds of frames while maintaining
consistency.

To ensure consistency across all frames in the edited video,
FLATTEN [231] incorporates optical flow into the attention mech-
anism of the diffusion model. The proposed Flow-guided attention
allows patches from different frames to be placed on the same
flow path within the attention module, enabling mutual attention
and enhancing the consistency of video editing.

4.1.3 One-shot-tuned Methods
One-shot tuned method entails fine-tuning a pre-trained T2I model
using a specific video instance, enabling the generation of videos
with similar motion or content. While it requires extra training
expenses, these approaches provides greater editing flexibility
compared to training-free methods.

SinFusion [234] pioneers the one-shot-tuned diffusion-based
models, which can learn the motions of a single input video
from only a few frames. Its backbone is a fully convolutional
DDPM [262] network, hence can be used to generate images of
any size.

SAVE [120] finetunes the spectral shift of the parameter
space such that the underlying motion concept as well as content
information in the input video is learned. Also, it proposes a
spectral shift regularizer to restrict the changes.

Edit-A-Video [80] contains two stages: the first stage inflates
a pre-trained T2I model to the T2V model and finetunes it
using a single <text, video> pair while the second stage is the
conventional diffusion and denoising process. A key observation
is that edited videos often suffer from background inconsistency.
To address such issue, they propose a masking method called
sparse-causal blending, which automatically generates a mask to
approximate the edited region.

Tune-A-Video [37] leverages a sparse spatio-temporal atten-
tion mechanism which only visits the first and the former video
frames, together with an efficient tuning strategy that only updates
the projection matrices in the attention blocks. Furthermore, it
seeks structural guidance from input video at inference time to
make up for the lack of motion consistency.

Instead of using a T2I model, Video-P2P [237] alters it
into a Text-to-set model (T2S) by replacing self-attentions
with frame-attentions, which yields a model that generates a
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set of semantically-consistent images. Furthermore, they use a
decoupled-guidance strategy to improve the robustness to the
change of prompts.

ControlVideo2 [235] mainly focuses on improving attention
modules in the diffusion model and ControlNet [4]. They trans-
form the original spatial self-attention into key-frame attention,
which aligns all frames with a selected one. Additionally, they
incorporate temporal attention modules to preserve consistency.

Shape-aware TLVE [233] utilizes the T2I model and handles
shape changes by propagating the deformation field between the
input and edited keyframe to all frames.

EI2 [236] makes two key innovations: the Shift-restricted
Temporal Attention Module (STAM) to restrict newly introduced
parameters in the Temporal Attention module, resolving the
semantic disparity, as well as the Fine-coarse Frame Attention
Module (FFAM) for temporal consistency, which leverages the
information on the temporal dimension by sampling along the
spatial dimension. Combining these techniques, they create a T2V
diffusion model.

StableVideo [232] designs an inter-frame propagation mecha-
nism on top of the existing T2I model and an aggregation network
to generate the edited atlases from the key frames, thus achieving
temporal and spatial consistency.

4.2 Other Modality-guided Video Editing
Most of the methods introduced previously focus on text-guided
video editing. In this subsection, we will focus on video editing
guided by other modalities (e.g., Instruct and Sound).

4.2.1 Instruct-guided Video Editing
Instruct-guided video editing aims to generating video based on
the given input video and instructions. Due to the lack of video-
instruction datasets, InstructVid2Vid [238] leverages the combined
use of ChatGPT, BLIP [187], and Tune-A-Video [37] to acquire
input videos, instructions and edited videos triplets at a relatively
low cost. During training, they propose the Frame Difference
Loss, guiding the model to generate temporal consistent frames.
CSD [239] first uses Stein variational gradient descent (SVGD),
where multiple samples share their knowledge distilled from dif-
fusion models to accomplish inter-sample consistency. Then, they
combine Collaborative Score Distillation (CSD) with Instruct-
Pix2Pix [17] to achieve coherent editing of multiple images with
instruction.

4.2.2 Sound-guided Video Editing
The goal of sound-guided video editing is to make visual changes
consistent with the sound in the targeted region. To achieve this
goal, Soundini [240] presents local sound guidance and optical
flow guidance for diffusion sampling. Specifically, the audio
encoder makes sound latent representation semantically consistent
with the latent image representation. Based on a diffusion model,
SDVE [241] introduces a feature concatenation mechanism for
temporal coherence. They further condition the network on speech
by feeding spectral feature embeddings with the noise signal
throughout the residual layers.

4.2.3 Motion-guided Video Editing
Inspired by the video coding process, VideoControlNet [242]
utilizes both diffusion model and ControlNet [4]. The method sets
the first frame as the I-frame with the rest divided into different

group of pictures (GoP). The last frame of different GoPs is set
as the P-frame while others are set as B-frames. Then, given an
input video, the model first generates the I-frame directly based
on the input’s I-frame using the diffusion model and ControlNet,
followed by generating the P-frames through the motion-guided
P-frame generation module (MgPG), in which the optical flow
information is leveraged. Finally, the B-frames are interpolated
based on the reference I/P-frame and the motion information
instead of using the time-consuming diffusion model.

4.2.4 Multi-Modal Video Editing
Make-A-Protagonist [243] presents a multi-modal conditioned
video editing framework to alter the protagonist. Specifically,
they utilize BLIP-2 [187] for video captioning, CLIP Vision
Model [117] and DALLE-2 Prior [2] for visual and textual clues
encoding, and ControlNet [4] for the video consistency. During
inference, they propose a mask-guided denoising sampling to
combine experts to achieve without-annotation video editing.

CCEdit [41] decouples video structure and appearance for con-
trollable and creative video editing. It preserves the video structure
using the foundational ControlNet [4] while allowing appearance
editing through text prompts, personalized model weights, and
customized center frames. Additionally, the proposed temporal
consistency modules and interpolation models can generate high-
frame-rate videos seamlessly.

4.3 Domain-specific Video Editing
In this subsection, we will provide a brief overview of several
video editing techniques tailored for specific domains, start-
ing with video recoloring and video style transfer methods in
Sec. 4.3.1, followed by several video editing methods designed
for human-centric videos in Sec. 4.3.2.

4.3.1 Recolor & Restyle
• Recolor Video colorization involves inferring plausible and
temporally consistent colors for grayscale frames, which requires
considering temporal, spatial and semantic consistency as well
as color richness and faithfulness simultaneously. Built on the
pre-trained T2I model, ColorDiffuser [244] proposes two novel
techniques: the Color Propagation Attention as a replacement for
optical flow, and Alternated Sampling Strategy to capture spatio-
temporal relationships between adjacent frames.
• Restyle Style-A-Video [245] designs a combined way of control
conditions: text for style guidance, video frames for content
guidance, and attention maps for detail guidance. Notably, the
work features zero-shot, namely, no additional per-video training
or fine-tuning is required.

4.3.2 Human Video Editing
Diffusion Video Autoencoders [246] proposes a diffusion video
autoencoder that extracts a single time-invariant feature (identity)
and per-frame time-varient features (motion and background) from
a given human-centric video, and further manipulates the single
invariant feature for the desired attribute, which enables temporal-
consistent editing and efficient computing.

In response to the increasing demand for creating high-quality
3D scenes easily, Instruct-Video2Avatar [248] takes in a talking
head video and an editing instruction and outputs an edited
version of 3D neural head avatar. They simultaneously leverage
Instruct-Pix2Pix [17] for image editing, EbSynth [263] for video
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stylization, and INSTA [264] for photo-realistic 3D neural head
avatar.

TGDM [247] adopts the zero-shot CLIP-guided model to
achieve flexible emotion control. Furthermore, they propose a
pipeline based on the multi-conditional diffusion model to afford
complex texture and identity transfer.

5 VIDEO UNDERSTANDING

In addition to its application in generative tasks, such as video
generation and editing, diffusion model has also been explored
in fundamental video understanding tasks such as video temporal
segmentation [42, 249], video anomaly detection [250, 251], text-
video retrieval [44, 253], etc., as will be introduced in this section.
The taxonomy details of video understanding is summarized in
Fig. 5.

5.1 Temporal Action Detection& Segmentation

Inspired by DiffusionDet [21], DiffTAD [42] explores the applica-
tion of diffusion models to the task of temporal action detection.
This involves diffusing ground truth proposals of long videos
and subsequently learning the denoising process, which is done
by introducing a specialized temporal location query within the
DETR [265] architecture. Notably, the approach achieves state-
of-the-art performance results on benchmarks such as Activi-
tyNet [87] and THUMOS [266].

Similarly, DiffAct [249] addresses the task of temporal ac-
tion segmentation using a comparable approach, where action
segments are iteratively generated from random noise with in-
put video features as conditions. The effectiveness of the pro-
posed method is validated on widely-used benchmarks, including
GTEA [267], 50Salads [268], and Breakfast [269].

5.2 Video Anomaly Detection

Dedicated to unsupervised video anomaly detection, Diff-
VAD [250] and CMR [251] harnesses the reconstruction capability
of the diffusion model to identify anomalous videos, as high
reconstruction error typically indicates abnormality. Experiments
conducted on two large-scale benchmarks [270, 271] demonstrate
the effectiveness of such paradigm, consequently significantly
improving performance compared to prior research.

MoCoDAD [252] focuses on skeleton-based video anomaly
detection. The method applies the diffusion model to generate
diverse and plausible future motions based on past actions of
individuals. By statistically aggregating future patterns, anomalies
are detected when a generated set of actions deviates from actual
future trends.

5.3 Text-Video Retrieval

DiffusionRet [253] formulates the retrieval task as a gradual
process of generating a joint distribution p(candidates, query)
from noise. During training, the generator is optimized using a
generative loss, while the feature extractor is trained using a
contrastive loss. In this manner, DiffusionRet [253] ingeniously
combines the advantages of both generative and discriminative
approaches and achieves outstanding performance in open domain
scenarios, demonstrating its generalization ability.

MomentDiff [44] and DiffusionVMR [254] address the task of
video moment retrieval, aiming to identify specific time intervals

in videos that correspond to given textual descriptions. Both ap-
proaches expand actual time intervals into random noise and learn
to denoise the random noise back into the original time intervals.
This process enables the model to learn a mapping from arbitrary
random positions to actual locations, facilitating the accurate
localization of video segments from random initialization.

5.4 Video Captioning

RSFD [255] examines the frequently neglected long-tail problem
in video captioning. It presents a new Refined Semantic enhance-
ment approach for Frequency Diffusion (RSFD), which improves
captioning by constantly recognizing the linguistic representation
of infrequent tokens. This allows the model to comprehend the
semantics of low-frequency tokens, resulting in enhanced caption
generation.

5.5 Video Object Segmentation

Pix2Seq-D [43] redefines panoramic segmentation as a discrete
data generation problem. It employs a diffusion model based on
analog bits [272] to model panoptic masks, utilizing a versatile
architecture and loss function. Furthermore, Pix2Seq-D [43] can
model videos by incorporating predictions from previous frames,
which enables the automatic learning of object instance tracking
and video object segmentation.

5.6 Video Pose Estimation

DiffPose [256] addresses the problem of video-based human pose
estimation by formulating it as a conditional heatmap generation
task. Conditioned on the features generated in each denoising step,
the method introduces a Spatio-Temporal representation learner
that aggregates visual features across frames. Furthermore, a
lookup-based multi-scale feature interaction mechanism is pre-
sented to create correlations across multiple scales for local joints
and global contexts. This technique produces refined representa-
tions for keypoint regions.

5.7 Audio-Video Separation

DAVIS [257] tackles the audio-visual sound source separation
task using a generative approach. The model employs a diffusion
process to generate separated magnitudes from Gaussian noise,
conditioned on the audio mixture and visual content. Due to
its generative objective, DAVIS [257] is more appropriate for
attaining high-quality sound separation across diverse categories.

5.8 Action Recognition

DDA [258] focuses on skeleton-based human action recogni-
tion. This method introduces diffusion-based data augmentation
to obtain high-quality and diverse action sequences. It utilizes
DDPMs [262] to generate synthesized action sequences, while
the generation process is accurately guided by a spatial-temporal
Transformer. Experimental results showcase the superiority of this
approach in terms of naturalness and diversity metrics. Moreover,
it confirms the effectiveness of applying synthesized high-quality
data to existing action recognition models.
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5.9 Video SoundTracker

LORIS [259] focuses on generating music soundtracks that syn-
chronize with rhythmic visual cues. The system utilizes a latent
conditional diffusion probabilistic model for waveform synthesis.
Moreover, it incorporates context-aware conditioning encoders to
account for temporal information, facilitating long-term waveform
generation. The authors have also broaden the applicability of the
model to various sports scenarios and is capable of producing
long-term soundtracks with exceptional musical quality and rhyth-
mic correspondence.

5.10 Video Procedure Planning

PDPP [45] focuses on procedure planning in instructional videos.
The approach uses a diffusion model to depict the distribution
of the entire intermediate action sequence, turning the planning
problem into a sampling process from this distribution. Further-
more, accurate conditional guidance based on initial and final
observations is provided using diffusion based U-Net model,
enhancing the learning and sampling of action sequences from
the learned distribution.

6 CHALLENGES AND FUTURE TRENDS

Despite the fact that diffusion-based methods have achieved sig-
nificant advances in video generation, editing and understanding,
there still exists certain open problems worthy of exploration. In
this section, we summarize the current challenges and potential
future directions.
• Collecting Large-scale Video-Text Datasets The substantial
achievements in Text-to-Image synthesis are primarily stemmed
from the availability of billions of high-quality (text, image) pairs.
However, the commonly used datasets for Text-to-Video (T2V)
tasks are relatively small in scale and gathering equally extensive
datasets for video content is a considerably challenging endeavor.
For example, the WebVid dataset [94] contains only 10 million
instances and has a significant drawback of its limited visual
quality, with a low resolution of 360P, further compounded by
the presence of watermark artifacts. While efforts to explore new
methods for obtaining datasets are in progress [30, 94, 135],
there remains a pressing need for improvements in dataset scale,
annotation accuracy, and video quality.
• Efficient Training and Inference The heavy training cost
associated with T2V models presents a significant challenge, with
some tasks necessitating the use of hundreds of GPUs [35, 135].
Despite the efforts by methods such as SimDA [31] to mitigate
training expenses, both the magnitude of dataset and temporal
complexity remains a critical concern. Thus, exploring strategies
for more efficient model training and reducing inference time is a
valuable avenue for future research.
• Benchmark and Evaluation Methods Although bench-
marks [84, 101] and evaluation methods [117, 121] for open-
domain video generation exist, they are relatively limited in scope,
as is demonstrated in [273]. Due to the absence of ground truth for
the generated videos in Text-to-Video (T2V) generation, existing
metrics such as Fréchet Video Distance (FVD) [121] and Inception
Score (IS) [125] primarily emphasize the disparities between
generated and real video distributions. This makes it challenging
to have a comprehensive evaluation metric that accurately reflects
video generation quality. Currently, there is a considerable reliance
on user AB testing and subjective scoring, which is labor-intensive

and potentially biased due to subjectivity. Constructing more
tailored evaluation benchmarks and metrics in the future is also
a meaningful avenue of research.
• Model Incapacity While existing methods demonstrate remark-
able progress, there are still numerous limitations due to model
incapacity. For example, video editing methods often experience
temporal consistency failures in certain cases, such as replacing
human figures with animals. Additionally, we observe that for
most methods discussed in Sec. 4.1, object replacement is limited
to produce output of similar attributes. Moreover, in pursuing
high fidelity, many current T2I-based models utilize key frames
from the original video. However, due to the inherent limitations
of off-the-shelf image generation models, injecting extra objects
while preserving structural and temporal consistency remains
unresolved. Further research and enhancement are essential to
address these limitations.

7 CONCLUSION

This survey offered an in-depth exploration of the latest de-
velopments in the era of AIGC (AI-Generated Content) with a
focus on video diffusion models. To the best of our knowledge,
this is the first work of its kind. We provided a comprehensive
overview of the fundamental concepts of the diffusion process,
popular benchmark datasets, and commonly used evaluation met-
rics. Building upon this foundation, we comprehensively reviewed
over 100 different works focusing on the task of video generation,
editing and understanding, and categorized them according to their
technical perspectives and research objectives. Furthermore, in the
experimental section, we meticulously described the experimental
setups and conducted a fair comparative analysis across various
benchmark datasets. In the end, we put forth several research
directions for the future of video diffusion models.
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